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Yield gap analysis is used to characterize the untapped production potential of
cropping systems. With emerging large-n agronomic datasets and data science
methods, pathways for narrowing yield gaps can be identified that provide
actionable insights into where and how cropping systems can be sustainably
intensified. Here we characterize the contributing factors to rice yield gaps
across seven Indian states, with a case study region used to assess the power of
intervention targeting. Primary yield constraints in the case study region were
nitrogen and irrigation, but scenario analysis suggests modest average yield
gains with universal adoption of higher nitrogen rates. When nitrogen limited
fields are targeted for practice change (47% of the sample), yield gains are
predicted to double. When nitrogen and irrigation co-limitations are targeted
(20% of the sample), yield gains more than tripled. Results suggest that
analytics-led strategies for crop intensification can generate transformative
advances in productivity, profitability, and environmental outcomes.

Technologies and management strategies emerging from the ‘Green
Revolution’ have transformed rice productivity and domestic food
security across India since the 1970s’. Nevertheless, India’s aggregate
demand for rice is still projected to rise through mid-century>?, despite
declining per capita consumption driven by demographic and dietary
transitions®. India also contributes to global food security as world’s
largest rice exporter with a market share that exceeded 40% in 2022°,
Greater demand for rice requires renewed efforts to understand where
and how intensification (i.e., increasing rice yields per hectare) can be
achieved without compromising environmental sustainability and

farm-level profitability, which we refer to as sustainable intensification.
Sustainable intensification is a particularly useful framework for rice
cropping systems given their central importance to water resources,
greenhouse gas emissions, and the livelihoods and food security of
millions of smallholders®™. The 2023 temporary export ban for certain
types of rice also demonstrates the political importance of price sta-
bility and domestic rice production to the Government of India.

In most emerging economies, harnessing the benefits of crop
genetic improvement while promoting ‘best bet’ packages of pro-
duction practices remain the dominant model for agricultural
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development'®". Although most Indian farmers now plant modern
cultivars?, there is a wide variability in productivity outcomes for staple
crops, even within individual states”. Smallholder-dominated farms in
India have diverse soil properties, hydrological regimes, and crop
management practices that together determine crop yields". In sharp
contrast to this heterogeneity, research-based crop management
recommendations are primarily extrapolated from controlled-
condition trials, representing a limited number of experimental sites,
and commonly overlook interactions between production factors such
as soil fertility management and irrigation practices'. As a complement
to research station experiments, farmer research networks have
emerged as an alternative approach for evaluating the context-
dependent performance of agricultural innovations®. There are, how-
ever, open questions about the number of factors and interactions that
can be studied through on-farm research as well as the financial and
transaction costs of implementing these approaches across large areas.

Beyond on-station and on-farm research trials, recent advances in
yield gap analysis offer another set of methodologies for characteriz-
ing the sustainable intensification potential of agroecosystems
through observational data'®". Nevertheless, for rice and other annual
cereal crops, most existing studies rely on surveys with limited sample
sizes' or, alternatively, crop models'®?°, remote sensing”?, or expert
judgement? as the basis for analysis. More recently, Nayak et al.** used
a comprehensive database of farmer field surveys to decompose (i.e.,
identify and characterize causal factors) rice yield gaps in Northwest
India, but focused on population-level analysis without considering
how yield constraints varied across fields and between sub-regions.
Heterogeneity is an important consideration in complex production
environments where smallholder farms predominate and diversity in
crop management practices is common®. Recent advances in inter-
pretable machine learning allows the identification of field-specific
yield constraints and can support the development of site-specific
insights and strategies for narrowing yield gaps through ex-ante sce-
nario analysis**%.

The primary objectives of this study are two-fold: (i) to quantify
the nature and factors contributing to attainable rice yield gaps in
India, and (ii) to assess how analytics-based solutions may contribute
to sustainable intensification through a case study in Bihar State and
adjacent districts of Uttar Pradesh (hereafter referred to as ‘East-
ern India’).

To address these objectives, we first aggregate a database of
15,876 field-year records for rice cultivation spanning seven major rice
producing states in India (i.e., the LCAS - ‘landscape crop assessment
survey’). We then estimate the attainable yield gap for each state,
defined, for our purposes, as the productivity difference between the
top-yielding farmer fields (i.e., mean of the top 10% - attainable yield)
and the mean of the remainder of the sample. With machine learning
and diagnostic modelling, we also characterize the principal agro-
nomic factors contributing to yield gaps in each state. Focusing on the
attainable yield gap is a pragmatic choice since strategies for reach-
ing biophysical yield potential are often not economically or envir-
onmentally desirable, whereas the attainable yield concept reflects
agronomic management strategies that are already practiced in a
region of interest, at least for some farmer segments®.

We then develop a detailed case study of rice yield determinants
in Eastern India based on the analysis of individual production fields.
Eastern India is a priority development region for the Government of
India that is endowed with a wealth of natural resources, particularly
water, but has comparatively low crop productivity and rural
incomes®. Our approach leverages a spatially balanced sampling fra-
mework and interpretation of machine learning yield predictions with
SHapley Additive exPlanations (SHAP) values. We then use the same
models to investigate the yield intensification and sustainability
impacts of changes in key agronomic practices through ex-ante sce-
nario analysis with and without solution targeting,.

By taking advantage of large-n surveys of crop yield and produc-
tion practices, we hypothesize that machine learning combined with
scenario and spatial analysis can identify context-dependent pathways
for sustainable intensification. With this approach (hereafter referred
to as ‘analytics-based’” methods), an overarching goal for this research
is to develop an integrative methodology to identify where and how
yield gaps can be narrowed while addressing multiple sustainable
development objectives.

Results

Attainable rice yield gaps across Indian states

Average rice yield across the surveyed Indian states ranged between
3.3tha™ in Jharkhand and 5.5t ha™ in Andhra Pradesh (Fig. 1a). Jhark-
hand also had the lowest attainable yield (5.1tha™) and Andhra Pra-
desh the highest at 7.7 t ha™. Despite notable differences in mean and
attainable yield levels, yield gaps varied between 1.7tha™ in West
Bengal to 2.4 t ha™ in Chhattisgarh (Fig. 1b). The median yield gaps in
Bihar and Eastern Uttar Pradesh, Jharkhand, and Odisha were all esti-
mated to be around 1.9 t ha™. The sizeable yield gaps documented in
these data indicate considerable scope to increase rice production
from existing land in India based on currently available technologies
and management practices.

Random Forest (RF) models were developed to identify yield
constraints for each state. RF explained between 29% (Odisha) and 52%
(Andhra Pradesh) of the overall yield variation. Based on yield con-
straints, the two most important management practices for the
attainable yield gap (Ygl & Yg2) were identified and the potential to
modify these practices to narrow the gap through improved agronomy
was assessed for each state with individual conditional expectance
(ICE) analysis (Fig. 2). Despite the perception that farmers generally
overuse inputs in India, N fertilizer rate along with the number of
irrigations were the main yield constraints in Odisha as well as in Bihar
and Eastern Uttar Pradesh, accounting for an average anticipated yield
gain of 0.2tha™ and 0.5 tha™, in the respective states. These average
values obscure the much higher yield gains anticipated in some fields.
For example, improved management of N and irrigation are antici-
pated to boost yields by an average of 0.6 t ha™ in the most responsive
fields in Odisha (i.e., top 25% of the yield gap distribution) and between
0.8 tha™and 2 t ha™ in Bihar and Eastern Uttar Pradesh. In West Bengal,
K fertilizer emerged as the most important yield constraint, and rice
variety and N fertilizer emerged in Jharkhand. In Chhattisgarh, insuf-
ficient N and P fertilizer rates were responsible for an average yield
gain of 0.36 t ha™, with anticipated yield gains in the most responsive
fields (i.e., top quartile) ranging between 0.5 and 2.0 tha™. Finally,
biophysical factors, not management practices, explained the largest
share of the yield gap in Andhra Pradesh, hence the scope for rice yield
increase through the top two management interventions, N and time
of sowing, appears to be more limited than in other states with a
combined yield gain of 0.27 t ha™.

Determinants of rice productivity in Eastern India

The large number of observations (n =10,714 field-year combinations)
permitted a comprehensive analysis of rice yield constraints with the
SHAP methodology for Eastern India. SHAP was used to quantify the
impact of biophysical factors and management practices on pre-
dicted yield outcomes (i.e., decomposing attainable yield gaps) at the
scale of individual production fields (Fig. 3). SHAP values can be
interpreted as the yield deviation from the population mean (t ha™)
attributable to a specific predictor for an individual production field.
Number of irrigations, N, P, and Zn fertilizer rates emerged as the
management practices with the largest influence on rice yield (Fig. 3A),
whereas cumulative solar radiation and maximum temperature from
sowing to harvest were the biophysical factors with the largest influ-
ence (Fig. 3B). For these specific data ‘features’, higher values were
associated with higher SHAP values, hence higher rice yield prediction.
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Fig. 1| Rice yields and yield gaps across seven states of India. (A) Displays the
rice yield variability and (B) the rice yield gap variability across field-year combi-
nations in the dataset. Blue dots in (A) indicate the attainable yield for each state
quantified as the mean yield of the top decile of production fields in each state. The
yield gap distribution in (B) refers to the difference between the attainable yield
and actual yields achieved in the remaining surveyed fields. The median yield gap

value is depicted by the black line within each box and the inter-quartile range is
defined by the box boundaries, whiskers extend up to 1.5 times inter quartile range.
The number of field-year combinations in each state is as follow, Bihar and Eastern
Uttar Pradesh (n =10,714), Jharkhand (n = 717), West Bengal (n =1363), Chhattisgarh
(n=1099), Odisha (n=747), and Andhra Pradesh (n=1046). Source data are pro-
vided as a Source Data file.

For features like sowing date (Julian date), larger values were asso-
ciated with negative SHAP values, suggesting a negative impact of late
planting on rice yield.

Hot spot analysis was used to generate spatial insights into the sub-
regions of Eastern India where SHAP values for irrigation and N fertilizer
were consistently high (red dots) or consistently low (blue dots) across
all surveyed field-year combinations (Fig. 4). For N fertilizer, there were
clear opportunity zones for increasing yields with higher N application
rates particularly in the southeast and north-central regions of our case
study region (Fig. 4A - points in blue). There were also areas where
SHAP values were inconsistent across fields (i.e., denoted in grey) or
areas where additional N use was not anticipated to translate into yield
gains (i.e., points in red). For irrigation, even stronger spatial patterns
emerged. Insufficient irrigation was predicted to limit rice yields in the
southeast and northern half of the case study region (Fig. 4B - obser-
vations in blue), whereas areas in the south and southwest were less
water-limited and unlikely to benefit from additional irrigation.

Next, to gain insight into the spatial extent and general distribu-
tion of co-limitations of N and irrigation, we clustered each surveyed
year-field combination based on whether irrigation (I) and N were
limiting (=; negative SHAP values) or less to non-limiting (+; positive
SHAP values). This resulted in four clusters across the 10,714 field-year
combinations out of which 35% where neither irrigation nor N was
limiting (I'N%), 35% where irrigation was limiting (I'N*), 20% where both
irrigation and N was limiting (I'N"), and 10% where only N was limiting
(I'N") (Supplementary Fig. 1). These results reflect the large number of
fields limited by irrigation and N fertilizer rate, either individually or
together. These clusters do not have a uniform spatial distribution, but
all cluster types were found in every administrative district. For
example, at the district level, 28-42% of the surveyed fields were not
limited by N or by irrigation (I'N*) (Supplementary Fig. 2).

Ex-ante evaluation of targeted versus ‘blanket’ management
strategies in Eastern India

After constructing a yield model and characterizing the key drivers of
yield outcomes, we then compared different strategies for achieving

sustainable rice intensification through a scenario analysis. Our goal
was to evaluate how targeted recommendations, if adopted, compare
with uniform (‘blanket’) recommendations where all farms adopt the
same management practice. Input use, predicted yield, and profit-
ability were assessed for each scenario and aggregated across the
region. For Scenario 1, all fields received an N rate of 125 kg N ha™ (i.e.,
current state recommendation). For Scenario 2, a blanket N rate of
180 kg N ha™ was assessed; this rate represents the population-level
non-limiting rate for Eastern India emerging from our analysis (see
Methods). Scenario 3 uses a targeting approach to adjust the N rate for
only those fields with a negative SHAP value for N to a rate of 180 kg N
ha™. Scenario 4 changes N rate to 180 kg ha™ and irrigation rate to 5 for
fields where both factors were predicted by SHAP to limit rice yield
(i.e., negative SHAP values for both factors). The last scenario was
designed to evaluate how the geography of opportunity shifts when
multiple interventions are considered.

Blanket use of the existing state N recommendation (Scenario 1)
was predicted to produce an additional 0.15 million tons of rice in
Eastern India with a small decrease of 0.016 million tons in total N use
compared to current farmer practice (Supplementary Table 1). At the
field scale, the implications of this strategy were highly variable with
farmers in some districts anticipated to have very significant yield
losses (data not shown). Blanket use of an analytics-based N recom-
mendation (180 kg N ha™) for all rice fields (Scenario 2) resulted in an
increase in rice production of 0.58 million tons but with an additional
0.22 million tons of N use as compared to the current farmer practice.
Conversely, using a targeted approach to N management (Scenario 3)
resulted in N increases to 180 kg ha™ for only 47% of all fields, produ-
cing an estimated additional rice production of 0.41 million tons while
using an additional 0.13 million tons of N. In comparison to Scenario 2,
this outcome represents a 21% gain in N use efficiency (‘NUE’ defined as
kg grain kg N™) associated with additional N use above current farmer
practice. In other words, the opportunity targeting in Scenario 3
appears to offer transformative gains in NUE over yield intensification
strategies that use analytics to define an optimal N rate at the popu-
lation level.
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Fig. 2 | Yield gain associated with the two most important management prac-
tices in seven states of Eastern India. Potential yield gains (t ha™) associated with
improved management of the top two most important agronomic constraints (Ygl,
Yg2) for each India state as estimated by individual conditional expectance (ICE)
analysis. Boxplots represent the distribution of yield gains predicted at the scale of
individual farm fields. The third boxplot in each panel represents the combined
effect of addressing both yield constraints (Ygl + Yg2). Boxplot shows the median

values and inter-quartile range as defined by the boxplot boundaries for Indian
states of Bihar and Eastern Uttar Pradesh (n=10,714), Jharkhand (n=717), West
Bengal (n=1363), Chhattisgarh (n=1099), Odisha (n=747), and Andhra Pradesh
(n=1046). The whisker extends up to 1.5 times interquartile range and data points
beyond these whiskers are represented as individual points. Source data are pro-
vided as a Source Data file.

By targeting fields where yields were co-limited by N and irrigation
(Scenario 4), practice changes were only implemented in 20% of all rice
fields. Among this sub-population, simultaneous changes to N and
irrigation management were predicted to produce an additional 0.56
million tons of rice with a modest investment of 0.08 million tons of N
in combination with an increase in irrigation that ranged from 1 to 4
events per field, a change that scales at the regional level to 2.33 million
additional irrigations per season, approximately equivalent to an
average of 17% of the water safely available for future use, which varies
across the districts®® (Supplementary Table 1). It’s important to note
that district-wise predicted changes for each scenario varied (Supple-
mentary Fig. 3).

Changes in predicted rice yield and profitability (defined as
partial net returns) at the district level varied within and across sce-
narios to varying degrees (Fig. 5). With a uniform N rate of
180 kg N ha™ applied to all fields (Scenario 2), the average yield gain
over current farm practices was 0.15 t ha™ (i.e., 3.5% increase), with a
profit gain of US$26 ha™® (Fig. 5A, B). With a targeted approach to N
management based on SHAP values (Scenario 3, 47% of the study
region), average yield gains doubled to 0.31t ha™ and profit gains to
about US $60 ha™, with the largest gains predicted in the eastern part
of our case study region (Fig. 5C, D). In Scenario 4, where only fields
with a co-limitation of N and irrigation were targeted (20% of the case
study region), the average predicted yield gain over existing farm

practices was 0.68 t ha™ (i.e., 19% increase) with a profit gain of $90
USD ha™ (Fig. SE, F).

Discussion

Rice is a dietary staple for more than 3.5 billion people, and in India
serves as the primary foundation for food security and as an important
export crop™~*>, Moreover, demand for rice in India is anticipated to
rise by as much as 50% by mid-century due to population increases®**.
Meeting these needs is increasingly challenging because of ground-
water depletion, soil degradation, environmental pollution, and
declining input use inefficiency that jeopardize sustainability goals in
different parts of South Asia”**%.

The Government of India has focused on rice intensification in
regions where yield gaps are perceived to be high (e.g., ‘Bringing the
Green Revolution to Eastern India’)®. States in Eastern India are con-
sidered rich in water resources but are typified by low productivity and
low farm income?. These areas stand in contrast to Northwest India -
known as the country’s breadbasket where the scope to increase rice
productivity is small**. Nevertheless, insights into the nature of yield
gaps in the emerging priority regions are generalized and incompletely
understood. In this study, we used an analytics-based approach to fill
this knowledge gap and identify context-dependent pathways for
sustainable rice intensification. Our approach quantifies field-specific
yield constraints, in contrast to earlier studies providing population
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biophysical attributes (B). The color ramp indicates the actual value for the numeric
variables or the assigned value (nominal) for categorical variables (see Supple-
mentary Table 2 for further information). Variable importance was estimated by
calculating the mean absolute SHAP value for all variables and is reported as
numeric values along the y-axis. Source data are provided as a Source Data file.

level yield gap insights***°, This type of local interpretation of
machine learning models can support intervention targeting to more
effectively and efficiently narrow yield gaps in production fields that
are likely to accrue the highest benefits.

At the scale of different production regions, average attainable
yield gaps for rice ranged between 1.8 and 2.8 t ha™. This means that
the average field achieves 55-65% of the rice yields obtained by top
performing farms in each state, suggesting considerable scope to
increase productivity with existing technologies. This identified scope
for rice yield improvement is lower than in global assessments that
consider biophysical potential yield as a benchmark to estimate yield
gaps (see Yuan et al.”?), but also more pragmatic since the benchmarks
are not theoretical. The main agronomic factors contributing to yield
gaps differed by state and included irrigation management, fertilizer
application rates (N and phosphorous, and zinc), variety maturity class,
and transplanting dates. Interestingly, only some of these factors fea-
ture in the Government of India’s investment strategies for rice
intensification in lower-yielding production environments®, and

constraints like insufficient N fertilizer are at odds with public policies
and environmental concerns that seek broad-based reductions in N
use in agriculture®.

Distinct development priorities emerged for each of our studied
regions, but this does not imply a ‘one size fits all’ approach to rice
intensification given the heterogeneity of management and environ-
mental factors within each region. To determine the potential impor-
tance of a targeted and analytics-based approach, we developed a
machine learning model for rice yield to predict productivity out-
comes under hypothetical scenarios of change for N and irrigation
management in Bihar and Eastern Uttar Pradesh states of Eastern India,
a case study region where these two factors were the top contributors
to attainable yield gaps (Fig. 2) with a strong spatial depen-
dence (Fig. 4).

Encouraging farmers to use the state-recommended ‘blanket’ N
rate is an ostensibly simple approach for avoiding over- or under-use of
fertilizer. But such strategy does not lead to significant production
gains in our case study region in Eastern India. On the other hand,
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Fig. 4 | Hotspot analysis of the two most important yield constraints in
Eastern India. Hot spot analysis of SHAP values for N fertilizer (A) and irrigation
(B) in Eastern India. Locations mapped in blue have consistently negative SHAP
values across fields, suggesting opportunities to intensify through improved
management of the respective factors. Locations mapped in dark red have positive

SHAP values, suggesting little scope to narrow yield gaps through changes in the
respective management factors. Areas mapped in grey do not exhibit consistent
responses across farm fields within a 10 km radius. Source data are provided as a
Source Data file.

Scenario 2 demonstrates the power of an approach that ‘learns’ from
cultivated landscapes to derive an analytics-based blanket N rate
rather than extrapolating recommendations from experimental sta-
tions (i.e., Scenario 1). Nevertheless, achieving the production gains
predicted in Scenario 2 would require a large total investment in N but

is only anticipated to generate incremental increases in average yield
and profitability for farmers adopting new practices. In contrast, the
power of solution targeting is evident in Scenario 3 where around half
the fields adopt new N rates but with a doubling of mean yield and
profitability gains for the fields implementing new practices above the
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Fig. 5| Ex-ante scenario analysis associated with practice change and targeting
strategies in Eastern India. District average yield (t ha™) and profitability (USD
ha™) gains for fields adopting new practices under Scenario 2 (A, B), Scenario 3
(C, D), and Scenario 4 (E, F). Scenario 2 consists of the analytics-informed blanket
approach where all fields applied 180 kg N ha™, whereas Scenarios 3 and 4 use
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targeting criteria based on anticipated responsiveness to management changes.
Scenario 3 increased the N rate only for fields with negative SHAP values for N, i.e.,
in I'N" and I'N" clusters. Scenario 4 addresses the co-limitation of N and irrigation
for fields in the I'N" cluster, i.e., increasing the N rate to 180 kg N ha™ and number of
irrigations to 5. Source data are provided as a Source Data file.

gains in Scenario 2. The power of solution targeting is even more
impactful when addressing multiple production constraints. Predic-
tions from Scenario 4 suggest that if nitrogen and irrigation co-
limitations are addressed in Eastern India, rice yield and profitability
gains will triple (20% of total area) for fields implementing new
practices.

Even though spatially explicit targeting in Scenarios 3 and 4
would not result in more total rice production than the blanket
recommendation in Scenario 2, it could prove essential for sustain-
able intensification for three reasons. First, benefits from change
need to be tangible for farmers and not expose them to higher levels

of risk**™**. Second, even with the emergence of pluralistic extension
systems and digital tools, many smallholders are not adequately
connected to formal sources of knowledge". With opportunities for
productivity gains more clearly identified, scarce resources to sup-
port agricultural innovation can be focused where the returns on
investment will likely be substantial. Lastly, targeting will also
improve input use efficiencies. N use efficiencies in Scenarios 3 and 4
were significantly higher than with blanket recommendations,
implying that a targeted approach will ensure that intensification
does not undermine environmental sustainability goals, including
greenhouse gas mitigation®.
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It is important to note that the yield models developed in this
study do not fully capture the observed variance in rice yield, implying
that there is more to learn when devising intensification pathways for
rice cropping systems in India. Accordingly, the further development
of efficient methods for characterizing cropping systems and envir-
onmental factors at scale are essential to support sustainable intensi-
fication within and beyond India. Moreover, the potential role of
emerging technologies is not captured in our analytics-based
approach, hence on-farm research networks must remain a vital
component of assessing the performance of new technologies across
crop production contexts. The on-farm validation of targeted recom-
mendation and incorporating on-farm feedback back to analytics can
make the approach more robust.

Finally, to translate analytics-led targeting strategies into practical
recommendations will require simplified ‘rules of thumb’ to guide
action for circumstances where full characterization data for individual
fields is lacking. For example, rice fields with less than 4 irrigations and
fertilizer N rates less than 118 kg N ha™ composed almost all of the
fields in our case study region targeted for practice change in Scenario
4 where both irrigation and N are predicted to limit yields (Supple-
mentary Fig. 4). Simplified recommendations in tandem with efforts to
recognize and address the bottlenecks that farmers face when imple-
menting new practices (see Urfels et al.***’) will help accelerate efforts
to narrow yield gaps in production contexts where intensification is
needed to address sustainable development goals.

Methods

The research conducted herein was reviewed by and complies with
standards established by the Research Ethics Committee of the Inter-
national Maize and Wheat Improvement Center (CIMMYT) as descri-
bed in policy number DDG-POL-04-2019. The ethics review code for
this study is IREC.2019.06. Verbal consent was obtained from all survey
participants.

Landscape-scale crop assessment surveys

The study area comprises the seven major rice producing states of
India, namely Eastern Uttar Pradesh and Bihar (n=10,714 field-year
combinations), Odisha (n=747), Jharkhand (n=717), Chhattisgarh
(n=1099), West Bengal (n=1363), and Andhra Pradesh (n=1046)
during the 2017, 2018, and 2019 monsoon seasons (Supplementary
Fig. 5). Data analyses consisted of the following steps. First, attainable
yield gaps (Yg,) were estimated for each state. Second, random forest
analytics were developed to identify the most important variables
explaining yield outcomes in each state. Third, the SHapely Additive
exPlanation (SHAP) was used to segregate the relative contribution of
each production factor to rice yield prediction and, finally, machine
learning-based scenario analysis was used to quantify the benefits of
integrated crop management practices at regional level, with a focus in
Bihar and adjacent areas of Eastern Uttar Pradesh where data collec-
tion was most intensive. Results of this analysis were further placed in a
spatial context for sustainable rice intensification in the region
through a geographical hotspot analysis.

The landscape-scale crop assessment surveys were conducted
with digital collection tools and requested information on agronomic
management practices and biophysical characteristics for the largest
rice production field in each farm. The farmer reported yield was
verified by measured crop cut yield through harvesting a 2x2m
quadrant randomly from the representative center of the field from a
fraction of farms. Survey data and the corresponding data collection
tool are freely available online™. The details of the sampling and data
collection protocols are reported elsewhere™. Survey data for each
field was then combined with gridded daily weather data from the
reported sowing to harvest dates from NASA Power (https://power.
larc.nasa.gov). Descriptive statistics of the variables used in the ana-
lysis are presented in Supplementary Table 2.

Yield gap diagnostics at state level

The attainable yield gap (Yg,) was estimated as the difference between
the mean actual yield across highest yielding fields (i.e., top 10 per-
centile of the yield distribution; the attainable yield) in each state and
the actual yield observed in all other fields in the respective state.
Thereafter, state-specific random forest models were developed, and
fine-tuned following Nayak et al*, to identify the most important
factors explaining rice yield variability in each state. Model over-fitting
was avoided by keeping at least 50 observations in all terminal nodes
within each tree.

After each model was built, individual conditional expectance
(ICE) plots*® were created for the two most important management
practices, sequentially, as identified by permutation-based feature
importance. ICE plots were developed for individual fields to predict
the relationship between the most important input variables and rice
yield, while keeping all other input variables at their reported value for
each field. For instance, suppose N fertilizer rate was identified as the
most important variable to explain rice yield variability, then crop yield
was predicted with ICE for a vector of N application rates capturing the
range of N application rates observed in the data in steps of 10 kgN
ha™. The difference between the predicted yield at the reported N
application rate and the maximum yield across the vector of N appli-
cation rates (Yswp1) reflects the expected yield gap closure once the
most important constraint is addressed (Yg;). Subsequently, the ori-
ginal feature values (i.e., N application rate, in this example) for each
field were replaced with the corresponding N application rate asso-
ciated with the maximum yield from the ICE (Nyiq max) and ICE plots
were created again for the second most important variable in combi-
nation with Nyiq max and the reported values of all other variables used
in the model for each field (Ysep2). The difference between the Ygeepo
and Ygep is defined as the expected yield gap closure once the second
most important constraint is addressed (Yg,). The combination of Yg;
and Yg, indicates the maximum expected yield gap closure after
removing yield constraints associated with the two most important
variables explaining yield variability.

The distribution of Yg; and Yg,, and their sum, was expressed
relative to the attainable yield estimated for each state to establish the
share of Yg, accounted by the two most important management
practices. The yield gap analysis was conducted with the ranger and
caret R packages*’*° and with the iml R package™.

Eastern India region case study

A SHapley Additive exPlanation (SHAP)-based methodology was fur-
ther deployed to quantify the relative contribution of biophysical
factors and management practices to rice yields prediction for 10,714
field-year combinations in Bihar and adjacent districts in Eastern Uttar
Pradesh (‘Eastern India’). SHAP is a post-hoc methodology to interpret
random forest models and identify heterogeneous effect of manage-
ment practices on yield prediction. SHAP is based on cooperative
game theory and is used to estimate the marginal contribution of each
player to a team’s overall performance™. By conceptualizing individual
fields as a ‘team’ and management practices as ‘players’, the SHAP
methodology can be used to quantify the relative contribution of each
management practice to crop yield outcomes on individual field.
Hence, with this methodology, the contextual value of different man-
agement practices can be translated into pathways for increasing crop
productivity through condition-specific interventions.

SHAP is an additive feature attribution method that is used as a
post-hoc approach for local interpretation of data-driven models. In
short, it defines the contribution of individual variables to model
predictions of the outcome of interest™. Thus, the SHAP value for any
variable J (¢;; t ha™) can be interpreted in our assessment as the mar-
ginal contribution of variable/ on rice yield prediction, as compared to
the average predicted rice yield across the dataset. In other words,
SHAP values refer to the yield contribution of individual variables,
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expressed as either a positive or negative deviation from the popula-
tion mean. Variables with larger positive and negative SHAP values in
absolute terms have a large positive and negative influence on mod-
eled yield predictions, respectively. The SHAP values were obtained for
each field with the iml R package® and visualized in relation to the
scaled absolute variable values. Numeric variables were normalized
using minimum-maximum scaling, and categorical variables were
ordinally factored and scaled (Supplementary Table 1). The spatial
distribution of the two management practices with highest absolute
SHAP value in Bihar and eastern Uttar Pradesh was assessed through a
hot spot analysis conducted in ArcGIS Pro 2.9.0 and consisting of the
calculation of the Getis-Ord Gi* statistic for each field assuming a fixed
distance band of 10 km.

Absolute SHAP values for each input variable were averaged
across fields to rank variables from most to least important at state
level. Fields were further segregated into four clusters based on the
two most important management practices at state level to delineate
where a single versus multiple production practice changes are
important to increase rice productivity. The clustering analysis sup-
ports a targeted approach to sustainable intensification, as opposed to
a blanket approach where all fields receive the same intervention. The
clustering was done based on the SHAP value for number of irrigations
and N fertilizer rate for each field. The clusters included fields with a
positive SHAP value for both practices (I'N*), a negative SHAP value for
both practices (I'N"), and a positive SHAP value for one and a negative
SHAP value for the other practice (I'N” and I'N*). As such, positive
SHAP values for a given management practice can be considered less
yield limiting and a negative SHAP values more yield limiting, indi-
cating where improved management can generate yield gains.

Four sustainable intensification scenarios were designed to
explore the aggregated production benefits, additional input
requirements, and profitability of yield gap closure in Bihar and East-
ern Uttar Pradesh as compared to current farmers’ practice. Scenario 1
consisted of the state level blanket recommendation of 125 kg N ha™ in
all fields. Scenario 2 consists of blanket use of 180 kg N ha™, defined
based on the partial dependency plots of a random forest model fitted
to the pooled data for Bihar and Eastern Uttar Pradesh. There were two
cluster-based targeting scenarios. Scenario 3 considered interventions
for the N fertilizer only in the I'N” and I'N" clusters. The same N dose of
180 kg N ha™ was used in these clusters, whereas N rates were not
changed in the other clusters. Scenario 4 consisted of cluster-based
targeting for both N and irrigation, i.e., addressing the co-limitation of
both production factors in a limited number of farms. The N use and
irrigation in I'N" cluster was changed to 180 kg N ha™ and 5 irrigations.
Crop management remained unchanged in the other clusters. For
Scenarios 1 and 2, the aggregated benefit in terms of additional pro-
duction was obtained by multiplying the predicted yield increases
(t ha™) by total rice area of each district. For Scenarios 3 and 4, the
additional rice yield, additional water and N use, and returns on
investment (i.e., additional resource costs, $20 USD per irrigation and
$0.14 USD per kg subsidized N, subtracted from additional rice sales
revenues based on the rice minimum support price for 2018) were
estimated at the district level considering the share of farms in each
cluster where interventions were targeted.

Software

All data analysis were conducted in R (4.2.3) with the following package
and version number, dplyr (1.1.4), caret (6.0.93), range (0.14.1), iml
(0.11.1), geodata (0.5.3), terra (1.7.55), tidyverse (1.3.2), ggpubr (0.6.0)
and dependencies, data.table (1.14.2), and gridExtra (2.3). Hotspot
analysis was carried out in ArcGIS Pro v.2.9.0.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The data used in the analyses presented in the manuscript are pro-
vided in Supplementary Data 1-2. The boundary map can be down-
loaded from the geodata package, and the open street map used with
ArcGlIS can also be obtained from ArcGIS. The rice area obtained from
https://aps.dac.gov.in is also provided in supplementary files. Source
data are provided with this paper.

Code availability
The R script used for the analysis is attached along with the manuscript
in Supplementary Code 1.
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