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Abstract

This paper provides a novel approach to integrate

farmers' behavior in spatially explicit agricultural land

use modeling to investigate climate change adaptation

strategies. More specifically, we develop and apply a

computationally efficient machine learning approach

based on reinforcement learning to simulate the adop-

tion of agroforestry practices. Using data from an eco-

nomic experiment with crop farmers in Southeast

Germany, our results show that a change in climate,

market, and policy conditions shifts the spatial distribu-

tion of the uptake of agroforestry systems. Our model-

ing approach can be used to advance currently used

models for ex ante policy analysis by upscaling existing

knowledge about farmers behavioral characteristics

and combine it with spatially explicit environmental

and farm structural data. The approach presents a

potential solution for researchers who aim to upscale

information, potentially enriching and complementing

existing land use modeling approaches.
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J E L C LA S S I F I CA T I ON

Q15, Q18, C31, D91

Understanding the impacts of climate change on land use and economic outcomes requires
knowledge of farmers' adaptation responses to changing climatic conditions (Burke &
Emerick, 2015). Agricultural land use models are a key instrument for investigating farmers' land
use decisions under climate change and to assess the potential of climate policies (Fei &
McCarl, 2023; Troost & Berger, 2014). They are of specific relevance to model climate change
adaptation measures and increasing incidences of extreme weather events (e.g., Mendelsohn
et al., 1994; Nelson et al., 2014; Ortiz-Bobea et al., 2021). These adaptation measures are highly rel-
evant to food security, economic viability, incomes, and the environmental impacts of the farming
sector (e.g., Carter et al., 2018; Fisher et al., 2012; Wheeler et al., 2013). Thus, ex ante modeling
assessments allow us to investigate land use decisions under changing climatic, market, and policy
conditions are of high policy relevance (Fei & McCarl, 2023). Existing modeling approaches, how-
ever, deal with key trade-offs, especially between the consideration of behavioral factors, spatial
resolution, as well as the data demand and requirement of computational resources.

In this study, we address the question of how information about farmers' behavioral charac-
teristics can be linked to spatially explicit environmental data for ex ante assessments of climate
and policy impacts on agricultural land use. More specifically, the aim of this study is to present
a computationally efficient machine learning approach based on reinforcement learning to
simulate—in a spatially explicit manner—the potential uptake of agroforestry practices as a
strategy to adapt to climate change.

Various studies provide ex post evaluations of how weather and climate change have
influenced agriculture, alongside examining the extent to which farms have implemented adap-
tation measures (e.g., Auffhammer, 2018; Lobell, 2014; Mérel & Gammans, 2021). However,
climate-induced land use adjustments will involve structural shifts, such as the switch to novel
land use types, practices, and technologies that are currently not in use. Thus, projections of
past land use change based on observations of previous decisions alone have limited value for
assessing farmer behavior or introducing new climate policies (Antle & Capalbo, 2001; Fei &
McCarl, 2023; Troost & Berger, 2014). In this context, ex ante assessments are an important
complementary approach to ex post evaluations that inform policies for climate change induced
land use adaptation in agriculture and for assessing the effects of implemented policies.

A wide range of modeling approaches are available, and they range from the field, farm, and
regional to the global level (see e.g., Arneth et al., 2014; El Benni et al., 2023; Lehmann et al., 2013;
Nelson et al., 2014; Troost & Berger, 2014). However, these modeling approaches are fraught with
important trade-offs (Rindfuss et al., 2004), especially between the in-depth consideration of behav-
ioral factors, for example, from experimental economic approaches (Huber et al., 2018; Reidsma
et al., 2018), spatial resolution of models (Fezzi & Bateman, 2011; Nolte, 2020), and data demand
and computational resources (Shang et al., 2023; Troost et al., 2022). For example, improving
models by adding spatially explicit behavioral information has high policy value (Verburg
et al., 2019). However, spatially explicit behavioral models may reinforce the need for data and
computational resources (Brown et al., 2017). A promising new pathway is the use of modern
machine learning algorithms (Wang et al., 2022). Such algorithms have successfully been utilized
in the field of agricultural economics, for example, to study the impacts of extreme weather events
(e.g., Webber et al., 2020), yield predictions (e.g., Schmidt et al., 2022), agricultural policy evaluation
(e.g., Stetter et al., 2022), or food security prediction (McBride et al., 2022). Although applied
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machine learning rapidly evolving, the deep integration of big data and machine learning with eco-
nomic research is still limited (e.g., Athey, 2017; Wang et al., 2022). In particular, spatially explicit
models of agricultural land use change under climate change lack computationally efficient algo-
rithms to account for behavioral factors such as farmers' preferences.

To address this gap, we provide a novel land use modeling approach based on reinforcement
learning using contextual multi-armed bandits. We integrate farmers' stated preferences for agro-
forestry practices, revealed through a discrete choice experiment on crop farms located in South-
east Germany with farm-specific data on their short- and long-term weather history. Based on
these data, we provide a spatially explicit ex ante assessment of the adoption of agroforestry prac-
tices under climate, market, and policy scenarios. The modeling approach is inspired by contextual
multi-armed bandits applied in recommender systems,1 the key principles of which we incorporate
into our land use modeling approach. Contextual multi-armed bandits are particularly beneficial
in our context because of their ability to learn rules, that map from observable characteristics of an
individual or location (e.g., the farm) to an action (e.g., the adoption of agroforestry).

This study contributes to the literature in two ways. First, we introduce a novel modeling
approach that combines empirical behavioral economic research approaches, including the use
of economic experiments, with reinforcement learning. Our approach presents a potential solu-
tion for researchers who aim to upscale information, potentially enriching and complementing
existing modeling approaches. Second, we provide site-specific recommendations for the adop-
tion of agroforestry practices, with a prescriptive character that can inform farmers' decision-
making process in the context of novel land use types that are more resilient to climate change
and currently not commonly used by farmers. This approach is relevant for identifying and
implementing sustainable land use practices that can alleviate the adverse effects of climate
change on agriculture and food production.

Our results exemplify a successful integration of behavioral and environmental data in a
spatially explicit manner. Thus, our approach extends the land-use modeling toolbox. The simu-
lations show that a change in climate, market, and policy conditions leads to shifts in the spatial
distribution of the uptake of agroforestry systems. This might provide relevant information for
farmers, farm advisors, or policymakers seeking to foster the adaptation to climate change.

The remainder of the article is structured as follows. Background Section 1 provides contex-
tual information regarding agroforestry as a climate change adaptation strategy. Section 2 pre-
sents the conceptual framework of this study. Section 3 describes the data used, and Section 4
explains the modeling implementation. Section 5 presents the results of our analysis, Section 6
discusses the findings, and Section 7 concludes.

BACKGROUND: AGROFORESTRY AS CLIMATE CHANGE
ADAPTATION STRATEGY

Land use and related adjustments play a critical role in adapting to and alleviating the adverse
effects of climate change (Pielke, 2005). These adjustments involve the cultivation of alternative
crops and varieties along with adjustments at the intensive margin including the use of water,
fertilizers or pesticides (e.g., Cabral et al., 2023; Graveline & Merel, 2014; Wimmer et al., 2023).
The Intergovernmental Panel on Climate Change recommends the cultivation of agroforestry
systems as an effective climate change adaptation measure (IPCC, 2022).

Agroforestry offers a solution for managing agricultural risks associated with climate vari-
ability and extreme events. Incorporating trees into agroforestry systems alleviates climate
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fluctuations, improves microclimates, alters wind patterns and temperatures, and regulates
water balance. Furthermore, agroforestry enhances soil health, fertility, and biodiversity,
thereby bolstering agroecosystem resilience to climate change (van Noordwijk et al., 2021). It
also generates multiple additional income streams and helps alleviate the adverse effects of
extreme weather events on crop productivity and profitability. Overall, incorporating woody
crops into agricultural landscapes can help build resilience and adaptation to the impacts of cli-
mate change while also providing multiple benefits to the environment and society (van
Noordwijk et al., 2021; Wolz et al., 2018).

Here, we focus on the integration of fast-growing trees such as poplar (Populus spp.), willow
(Salix spp.), and black locusts (Robinia spp.) in arable lands. These trees are usually harvested
(i.e., cut) every 2–5 years for bioenergy production. They are characterized by rapid re-growth
of shoots from stumps. The total lifetime of such trees is about 20 years, after which they are
usually converted back into arable cropping systems (Rödl, 2017). We specifically examined two
types of agroforestry systems: short-rotation coppice and alley-cropping. Fast-growing trees are
cultivated instead of traditional arable crops in short-rotation coppice systems (Rödl, 2017). By
contrast, in alley-cropping systems rows of trees are planted alongside agricultural crops in
strips or alleys. Alley spaces between tree rows are used for cultivating crops. The trees are typi-
cally planted in such a way that competition with other crops is avoided (Wolz et al., 2018).

CONCEPTUAL MODELING FRAMEWORK

Land use is a consequence of the interplay between many drivers and processes including natu-
ral, institutional, economic, and behavioral factors (Meyfroidt et al., 2018; Wang et al., 2022).
Thus, simulating land use changes under climate change depends on the integration of these
factors. This is of specific importance in the context of agricultural land use change which
depends on spatially diverse farming conditions, diversified farming systems, and the decision-
making of heterogenous farmers (Huber et al., 2018).

The proposed machine learning approach integrates spatially explicit information on
farmers' land use preferences for agroforestry practices with economic and environmental infor-
mation for upscaling land use change in a computationally efficient manner (Figure 1). This
model helps provide site-specific recommendations.

In the following sections, we describe the modeling approach in more detail. We identify
farmers' preferences and integrate them with environmental data in order to predict agricul-
tural land-use changes in space, that is, across heterogeneous farms and farming conditions
under climate and policy changes.

Random utility theory and farmers' preferences

The behavioral model that guides individual farmers' decision-making processes is assumed to
follow random utility maximization (Lancaster, 1966; McFadden, 1973). This flexible behavioral
framework explains how individuals choose among alternatives in the presence of uncertainty.
Regarding land use in the context of climate change, farmers must choose among a set of alter-
native land uses. Each land user obtains a certain level of indirect utility from each land-use
alternative. In decision situation t, they select alternative i if and only if:
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Uit >Ujt, j≠ i: ð1Þ

As a standard, it is assumed that farmers' utility from a land-use alternative varies with a set
of decision-relevant characteristics. In the case of the here used experiment presented by Stetter
and Sauer (2022), these are contribution margin2 contribution margin variability, minimum
useful lifetime, agri-environmental payments, and eligibility as an ecological priority area. Fol-
lowing Nerlove (1958) and Ramsey et al. (2021), we assume that farmers' subjective utility also
depends on their experiences with short- and long-term weather trends, that is, the local
weather history at the time of the planting decision. Short- and long-term weather trends might
affect land use choices. The direct link between local weather history and individual decisions
comes from the fact that past weather causes various types of subjectively experienced uncer-
tainties (compare Stetter & Sauer, 2022). This theoretical framework builds upon a growing
body of research that highlights the significant link between historical weather events and eco-
nomic decision-making. For example, Ramsey et al. (2021) and Wimmer et al. (2023) demon-
strate that land-use decisions are shaped by a combination of local short- and long-term
weather histories. Ji and Cobourn (2021) further substantiate this finding, indicating that

FIGURE 1 Conceptual modeling framework. To optimize land use recommendations for farmers, data from

a discrete choice experiment deliver information on farmers' choices (stated preferences), potential land uses

(i.e., their action space), and information on land use attributes. Local weather history is used to describe

farmers' context. However, the approach also allows to include further contextual information. The farm-level

data are then used to train and hypertune a contextual multi-armed bandit algorithm, which yields a trained

land-use recommender algorithm that maps context to land-use decisions. The trained algorithm is subsequently

supplied with raster-level contextual data, enabling it to generate land-use recommendations for each raster

unit. The contextual factors influencing land-use decisions (weather history and land use attributes) can vary

depending on the specific scenario.

AGRICULTURAL LAND USE MODELING AND CLIMATE CHANGE ADAPTATION 5
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economic decision-making is driven by both short-term and long-term experienced weather
from the past, influencing agents' subjective expectations regarding future climate conditions.
Petersen-Rockney (2022) finds that experienced weather holds greater relevance for climate
change adaptation compared to farmers' perceptions thereof.

Discrete choice experiments are a popular method that can be used to empirically elicit indi-
viduals' preferences based on random utility theory (Louviere et al., 2000). Using the results of
such an experiment in a land use recommendation model allows for the explicit inclusion of real-
world, empirically measured farmer behavior without relying on oversimplifying assumptions.

Data-driven recommender system for optimal land use under climate
change

Recommender systems generate recommendations for users based on their interests and needs
and play a crucial role in digital companies, leveraging big data to improve performance
(Buhmann et al., 2011). In recent years, the multi-armed bandit framework has gained signifi-
cant attention in recommender systems (Bouneffouf & Rish, 2019). Multi-armed bandits fall
under the broader category of reinforcement learning, which is a branch of machine learning
dedicated to understanding how intelligent agents make optimal decisions in dynamic environ-
ments (Pathak et al., 2021).3

Multi-armed bandits are a class of problems for adaptive decision-making under uncer-
tainty, where an agent must choose between multiple options, each with an unknown reward
distribution. The agent's goal is to maximize the total reward obtained over a sequence of
choices, while balancing the trade-off between exploration (trying out different options to learn
about their rewards) and exploitation (choosing the action that appears to be the best based on
current knowledge) (Pathak et al., 2021). We frame the agent's land use allocation problem as a
contextual multi-armed bandit problem, which is a variant of the classical multi-armed bandits
problem. In the contextual multi-armed bandit problem, the reward distribution depends not
only on land users' decisions but also on the context associated with it (Speekenbrink, 2022).

At the fundamental level, within multi-armed bandit problems, an agent faces an
assignment problem with limited information (i.e., uncertainty). Given the novel nature of
climate-resistant land uses (i.e., agroforestry), there is a lot of uncertainty surrounding
the attributes of these novel land use options, which are usually unknown or unobserved in the
real-world (compare e.g., Lu et al., 2010). However, the local weather history can be measured.
Hence, in our model, the task is to map weather history (i.e., context) to an action (i.e., the deci-
sion to choose either alley-cropping, short-rotation coppice, or arable crop farming), such that
the expected cumulative expected reward (i.e., utility) across the entire sample (and thus all
land users) is maximized.

Mathematically, let at be the chosen action (i.e., choosing a land use type) in decision situa-
tion t and ct be the context or features associated with each action (i.e., weather history) in t.
Let r a,cð Þ denote the distribution of rewards obtained by performing action a in context c. The
expected cumulative reward function over contexts for action a is defined as (compare Silva
et al., 2022; Vermorel & Mohri, 2005):

Q a,cð Þ¼E
XN
t¼1

r at,ctð Þ
" #

, ð2Þ
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where N is the number of observed decision situations (e.g., from a discrete choice experiment).
In other words, the contextual multi-armed bandit algorithm aims to learn a mapping from
context4 ct to action at, such that the expected cumulative reward is maximized across all obser-
vations. The choice of action in each decision situation depends on the context observed at that
time, and the algorithm updates its estimates of the expected rewards of each action given the
observed contexts and rewards over time (i.e., learns from each decision situation, see also
Figure S1).5 By adjusting the contextual information provided to the agent, various policy and
climate-change scenarios can be simulated.

Finally, the agent's goal is to determine the action a� that maximizes the expected cumula-
tive reward for each context c (Vermorel & Mohri, 2005):

a� cð Þ¼ arg max
a

Q a,cð Þ: ð3Þ

The mapping function a� cð Þ is learned from observations by repeatedly selecting actions,
observing the corresponding rewards and contexts, and updating the estimates of Q a,cð Þ.

CASE STUDY AND DATA

Our case study region Bavaria is a German federal state located in the southeast of the country
(Figure 2a). It belongs to the core regions of agricultural production in Germany and the
European Union (Stetter et al., 2023). In 2022, with 78,000 farms managing 3.1 million ha, crop
farming occupied 65% of the agricultural land (Bavarian State Office for Statistics, 2023). The
natural conditions in Bavaria vary, with farming occurring across a gradient of elevation from
100 to 1600 m and a range of annual average temperatures between 3 and 10�C. Annual precip-
itation levels also vary from 470 to 1592 mm (LfU, 2019). Climate change implies more extreme
weather events that will threaten the viability of Bavarian farms (Bavarian State Ministry for
the Environment and Consumer Protection, 2021). Notably, the investigated agroforestry sys-
tems, namely, alley-cropping and short-rotation coppice are not (yet) widely cultivated in the
case study region.

Choice experiment and historical weather data

The data used to train and test our model were obtained from an online discrete choice experi-
ment conducted with Bavarian crop farmers (Stetter & Sauer, 2022). Each participant was con-
fronted with a total of 12 hypothetical choice situations. The decision situations were defined
such that the participants could choose among three land use options: alley-cropping, short-
rotation coppice, or business-as-usual arable crop farming.6 The attributes of the agroforestry
options varied across choice sets in five dimensions: contribution margin, contribution margin
variability, minimum useful lifetime, agri-environmental payments, and eligibility as ecological
priority area. The ranges of the attribute levels were designed to reflect realistic choice situa-
tions that farmers could relate to. A discussion on this can be found in the supplementary mate-
rial (section S.2) of the paper. All land use options and their characteristics were described to
the respondents before starting the experiment.

AGRICULTURAL LAND USE MODELING AND CLIMATE CHANGE ADAPTATION 7
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The experiment was conducted online in October 2020 and targeted respondents from a
diverse pool of farmers sourced through agriEXPERTS, an agricultural market research plat-
form associated with Deutscher Landwirtschaftsverlag (dlv), a specialist publishing house for
agriculture. Further information on the discrete choice experiment can be found in Stetter and
Sauer (2022).7

In total, 198 farmers scattered across Bavaria provided complete responses (see Figure 2a).
The participating farmers chose the business-as-usual arable crop farming alternative most
often among the three options (1277 times), followed by alley-cropping (678 times) and short-
rotation coppice (421 times) (Figure 2b). The data provided in total 7128 farmer-action observa-
tions. The target variable takes a value of 1 if a land-use alternative is chosen, and 0 otherwise.
Farmers in the sample reported experiencing negative consequences of climate change-related
extreme weather events, particularly yield and quality losses (compare Stetter & Sauer, 2022).

Information on the contribution margin (which lies in the range €400–€800 per ha of arable
land) and agri-environmental payments for agroforestry (€0–€200 per ha) from the discrete
choice are considered in the contextual information to generate market and policy scenarios,
respectively (see Section 4.3).

FIGURE 2 Case study and modeling data description. (a) The case study region Bavaria lies in the center of

Europe. In total, the preferences of 198 farmers spread across Bavaria were used for the analysis. (b) Shares of

land use choices made by the respondents in the discrete choice experiment. (c) Description of weather history

data, long-run: years t � 4 to t � 10, short-run: years t � 1 to t � 3.

8 APPLIED ECONOMIC PERSPECTIVES AND POLICY
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Farmers' stated land use choices were spatially matched with gridded daily weather data at
the location of their farm from the European Climate Assessment & Dataset project (Cornes
et al., 2018) via zip codes. To accurately depict the local weather history specific to the farms,
five commonly used weather indicators were chosen. These indicators encompass the average
temperature, total precipitation, number of dry days, number of hot days, and number of heavy
rain days observed throughout the local growing season, which spans from March to October.8

Drawing upon the definitions by ETCCDI (2018) and DWD (2022), the term “dry days” refers to
days with precipitation levels below 1 mm, while “hot days” are characterized by maximum
temperatures surpassing 30�C. Heavy rain days were classified as those on which precipitation
exceeded 20 mm.

In accordance with the theoretical framework discussed in Section 2, farmers rely on histori-
cal weather patterns when selecting land-use types, which can be categorized into short- and
longer-term patterns. To capture this difference, short- and long-term weather variables with
distinct lag structures were defined. Following Ramsey et al. (2021) and Wimmer et al. (2023),
the short-term weather patterns for the five indicators were established based on the average
values from years t�1 to t�3 (i.e., 2017–2019), representing the more recent past. Conversely,
longer-term weather patterns were derived from the average values of the years t�4 to t�10
(i.e., 2010–2016), representing a more distant historical period. The weather histories of the
farms are summarized in Figure 2c.

Prediction data

Gridded weather history

To build our prediction dataset to project local farmers' decisions in space, we divided the case
study region into 1 km2 regular grid cells (N = 61,205) and described them based on their indi-
vidual weather history. Each grid cell was regarded as an individual decision-making unit. Ras-
ter cells without cropland are excluded from the analysis. The meteorological data come from
the German Meteorological Service (Deutscher Wetterdienst, DWD). Weather history indicators
were based on open access daily gridded weather data (DWD Climate Data Center
[CDC], 2023). These data are created by interpolating weather measurements from more than
1300 stations (Razafimaharo et al., 2020). Further information on this data set is available in
Rauthe et al. (2013) and Razafimaharo et al. (2020). Figure S3 provides an overview of the indi-
cators used for the corresponding land-use predictions.

Climate projections

The data used to assess the impact of climate change on the cultivation of agroforestry in
our case study region stems from bias-adjusted climate change scenarios from the Bavar-
ian Climate Projection Ensemble provided by the Bavarian State Office for the Environ-
ment (LfU, 2020; Zier et al., 2020, for details). The data were provided on a 5 km � 5 km
grid, which yields 5183 locations. It represents daily data aggregated for the growing sea-
son as previously performed.

To showcase the usefulness and flexibility of our suggested modeling approach against the
background of climate change, we focused on two different greenhouse gas Representative

AGRICULTURAL LAND USE MODELING AND CLIMATE CHANGE ADAPTATION 9
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Concentration Pathways (RCPs),9 RCP 8.5, and RCP 4.5, based on the EC-Earth global climate
model system implemented by the climate-limited area modeling community (Will &
Hense, 2008). We assessed land use allocation for 2020, 2030 and 2050. Figure S4 provides an
overview of the input data used for the climate change scenarios.

To assess the sensitivity of the obtained results, additional regional climate projections were
tested for RCP 2.6, RCP 4.5, and RCP 8.5 in addition to the selected model. Further information
is provided in the Table S1.

MODEL IMPLEMENTATION

We employed three widely adopted and well-established contextual multi-armed bandit algo-
rithms (Silva et al., 2022), that is, LinUCB, decision tree UCB (upper confidence bound) and
k-nearest neighbor UCB, to develop our land use allocation model. To identify the best-
performing recommendation model, each of these algorithms underwent rigorous hyper-
parameter tuning. Once the best algorithm was chosen based on predefined criteria, it was
employed to investigate the land use implications of different climate, market, and policy
scenarios.

Three contextual multi-armed bandit algorithms

All algorithms presented herein consist of three components. First, parametric or non-
parametric models predict the expected rewards from each land-use type for any observation.
Second, the exploration factor determines the mechanism by which the algorithm explores dif-
ferent actions to gather information regarding potential rewards. The uncertainty component
refers to a lack of knowledge or uncertainty regarding the true rewards associated with each
action.

LinUCB algorithm

The linUCB algorithm (Li et al., 2010) is a parametric regression-based technique. First, follow-
ing Strong et al. (2021), the algorithm trains a ridge regression (Hoerl & Kennard, 1970) for each
land use type that models the expected reward using a linear relationship between contextual
features (Xa)

10 and observed rewards (r) for each land use type a:

bra ¼ θTXa, ð4Þ

where θT denotes the parameter vector. Based on this, the algorithm calculates the UCB for
each land-use choice for each new observation as follows:

UCBa¼braþα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XT

aXaþ λ � Id
� ��1

xc

q
, ð5Þ

where α is the exploration factor, λ is the ridge regression strength, and Xa is the design matrix
for land use a, which contains the features of actions that have already been explored. xc
describes the feature vector associated with context c. The exploration factor controls the

10 APPLIED ECONOMIC PERSPECTIVES AND POLICY
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balance between exploration and exploitation. A higher exploration factor encourages more
exploration of different land uses, whereas a lower value favors exploitation of the arms
that have shown higher estimated rewards. The regularization parameter λ determines the
amount of shrinkage applied, with larger values leading to greater shrinkage (Hoerl &

Kennard, 1970).
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XT

aXaþ λ � Id
� ��1

xc
q

denotes the predictive precision of the expected

reward. The LinUCB algorithm selects the action (i.e., land use) with the highest upper
confidence bound value (Li et al., 2010). This approach allows the algorithm to explore
actions with high potential rewards and exploit actions that have performed well in the
past. At each new observation during training, the coefficients of Equation (4) are
updated, restarting the process described above.

Decision tree UCB algorithm

In this approach, a decision tree algorithm is combined with the UCB1 algorithm (Strong
et al., 2021). As before, the UCB consists of three parts: the predicted reward for an observation,
the exploration factor, and uncertainty. This can be expressed as follows:

UCBa ¼braþα�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� log Nð Þ

na

s
, ð6Þ

where N is the total number of sample rounds, and na is the number of times a land use alter-
native is selected up to the current time step. In this approach, the Chernoff–Hoeffding bound
is used to determine the prediction intervals for estimating the true reward. This decreases as
the number of samples from an action (na) increases (Auer et al., 2002). By choosing the action
with the highest UCB for each training observation, the algorithm effectively balances explora-
tion and exploitation. This allows for efficient learning and decision-making when the goal is to
maximize the cumulative reward over samples (McNellis et al., 2017).

As for the prediction of the expected reward bra, a decision tree for each land-use type is
trained based on the contextual history X . The decision tree partitions the context space into
neighborhoods, and for each leaf node, a list of rewards is maintained. The tree-building pro-
cess involves recursively splitting the data based on contextual variables, creating a tree struc-
ture in which each leaf node (i.e., the terminal node) corresponds to a specific subset of the
feature space and provides a prediction of the target variable associated with that region.
The predictions at the leaf nodes are calculated as the mean of the observed rewards associated
with that leaf (see e.g., Hastie et al., 2009).

As before, for each new observation during training, the algorithm re-starts the process
described above. Other than before, decision trees are non-parametric. However, there are
many hyperparameters that can be adjusted in order to improve the prediction (compare
Section 4.2).

K-nearest neighbors UCB algorithm

This method is similar to the previous method. However, it differs in that it uses k-nearest
neighbors regression instead of a decision tree to predict the expected rewards bra (Strong

AGRICULTURAL LAND USE MODELING AND CLIMATE CHANGE ADAPTATION 11
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et al., 2021). The idea behind this is to estimate the reward of an action, examine the contextual
variables and to determine the k nearest (most similar) observations based on these variables.
The value of k is a predetermined number to be chosen. Subsequently, the rewards of those k
nearest observations are averaged. The average of each k-nearest neighbor partition becomes
the estimate of the reward for land use i (see e.g., Hastie et al., 2009). The nearest neighbors are
determined based on the Euclidean distance. As before, each observation updates the algorithm
and re-starts the process.

Hyperparameter tuning and model selection

To select a recommender model, we evaluated different versions of the proposed algorithms. To
do so, we split our modeling data into training and test data. Following Dobbin and Simon
(2011), we allocated two-thirds of the cases to training. Using the training data, we conducted a
hyperparameter grid search across multiple hyperparameter specifications for each algorithm,
yielding a comparison of 136 candidate models (Table S2). Using the test data, we evaluated the
performance of each model specification based on five criteria. First, we evaluated cumulative
expected rewards as our primary target measure:

CER¼
XN
i¼1

E ra½ �, where E ra½ � ¼ 1 for ba¼ a

E rajcp
� �

for ba≠ a

(
: ð7Þ

That is, when the predicted action ba is the same as the historic decision a, the reward is
1 (farmers obtain their favorite option). When the predicted action is different, the mean reward
conditional on context c is used (farmers do not get their favorite land use, but still receive util-
ity from that option). To compare the results of the models, we normalized the indicator to fall
within the range of 0–1.

Second, we included prediction accuracy (i.e., the algorithm predicts farmers/agents' land-
use decisions correctly) as an indicator of the model performance. This allowed us to evaluate
the algorithm in terms of its ability to reflect farmers' decision, as made in the discrete choice
experiment. This is the ratio of the number of correctly predicted instances to the total number
of instances.

Third, we analyzed the click-through rate, which measures the accuracy of the recommen-
dations over a subset of farmer-land use pairs that appear in both actual choices and recom-
mendations (Dudik et al., 2011). The click-through rate is important because the goal of our
recommender system is not to simply predict farmers' decisions but to pinpoint the recommen-
dations that farmers' would interact with, that is how likely they are to adopt the recommended
options. Fourth, the inverse-propensity weighted click-through rate (IPS) assigns weights to
land-use options based on the likelihood that they are recommended when the farmer encoun-
ters them in the historical data (Dudik et al., 2011). This weighting scheme inverts the probabil-
ities, giving greater weight to less likely actions. Finally, the doubly-robust click-through rate
(DR) directly combines predicted values (CTR) with a correction based on the likelihood of an
item being recommended by the historical policy when the farmers encounter it in the histori-
cal data (IPS) (Dudik et al., 2011). It is supposed to account for potential biases in the data and
considers the predicted “click” probabilities based on farmer features (see also supplementary
material section S.5).

12 APPLIED ECONOMIC PERSPECTIVES AND POLICY
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After computing all five evaluation metrics, we selected the model specification that per-
formed best across these criteria as our land use recommender model for further analysis.

Climate, market, and policy scenarios

We used our trained contextual multi-armed bandit model based on farm-level observed data
(compare Sections 4.1 and 4.2) to run several climate, market, and policy scenarios. In our base-
line scenario, we adopted the conditions outlined in the discrete choice experiment as the prev-
ailing conditions for each grid cell. A two-step procedure was conducted for the market and
policy scenarios. First, we re-trained the model by adding contextual features on top of the local
weather history to reduce uncertainty by explicitly accounting for the features (compare
Figure 1). Here, we used contribution margin and agri-environmental payments for agroforestry
as additional features (i.e., independent variables) during the training phase. This resulted in
two scenarios. In the market scenario, the agroforestry options do not have the potential to earn
farmers a higher contribution margin than arable crop farming. Thus, we fixed the profitability
of the agroforestry practices at the level of arable farming (€400 per ha) for each grid cell. Like-
wise, in the policy scenario, we guarantee an agri-environmental payment for agroforestry of
€200 per ha (compare Table 1). The two-attribute scenarios were chosen for their comprehen-
siveness and accessibility, allowing the reinforcement learning approach to be demonstrated
effectively. The choice to focus on the contribution margin and agri-environmental payments
reflects the importance of market conditions and policy factors in evaluating the adaptability
and profitability of agroforestry practices (Augère-Granier, 2020; Gillich et al., 2019). These sce-
narios provide a solid foundation for exploring more complex scenarios (with more attributes)
in the future.

Second, we used the re-trained algorithms to recommend optimal land use under different
climate projections. To do so, we supplied the trained recommender models, including the
models used for the market and policy scenarios, with climate projection data at the raster level
using RCP 4.5 and RCP 8.5 as underlying climate scenarios (Section 5.3). Based on these data,
we computed land use recommendations for 2020, 2030, and 2050 under different climate, mar-
ket, and policy scenarios. Thus, we can assess how changing these features influences the opti-
mal land-use allocation under different climate projections.11

TABLE 1 Scenario description.

Scenario

Contribution margin (€/ha) Agri-environmental payment (€/ha)

Agroforestry Arable crop farming Agroforestry Arable crop farming

Baseline 400–800 400 0–200 0

Market 400 400 0–200 0

Policy 400–800 400 200 0

Note: The market and policy scenarios involve incorporating additional contextual variables on top of farms' weather history
during training. During prediction, they are kept fixed to reflect specific scenarios at predetermined levels. In the market

scenario, contribution margin is included as an additional contextual variable and fixed at €400. In the policy scenario, agri-
environmental payment is included as an additional contextual variable and fixed at €200.

AGRICULTURAL LAND USE MODELING AND CLIMATE CHANGE ADAPTATION 13
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RESULTS

We find that introducing agroforestry (here, alley-cropping and short-rotation coppice) can be a
viable adaptation strategy for farmers. If introduced in a spatially optimal way, it could increase
the overall utility of farmers under given and future climates by more than 20%. In the market
scenario (i.e., agroforestry does not earn farmers a higher contribution margin than arable crop
farming), we observe a decrease in alley-cropping of approximately 10% compared with the
baseline. In contrast, an agri-environmental payment of €200 per ha increases alley-cropping by
1% and short-rotation coppice by 10%. Revealingly, climate change not only implies shifts in the
total shares of the land use options but also leads to a spatial re-distribution of the optimal agro-
forestry land use. In the following section, we describe the selected model before presenting the
results of the baseline, and market and policy scenarios (Section 5.2). In Section 5.3, we describe
the results of combining policy and climate scenarios.

Allocation model choice

We opted for the decision tree UCB algorithm as our preferred model, with the following spe-
cific hyperparameter settings: α¼ 0:5, minimum requirement of two samples to split an internal
node, and a maximum depth of 8. When evaluating the performance of various candidate algo-
rithms on the test set, this particular model surpassed all the others. Table S2 and Figure S5
show that the decision-tree UCB algorithm achieved the highest cumulative reward, accuracy,
and click-through rate (66%). Additionally, it ranks among the top specifications in terms of the
doubly-robust click-through rate.

Optimized land use allocation in space

Figure 3a.1 depicts the optimized land use allocation for the baseline scenario based on the
decision tree UCB multi-armed bandit. This implies that under the conditions of the discrete
choice experiment (Section 3.1), overall farmers' expected utility could be improved by increas-
ing the share of short-rotation coppice and alley-cropping systems in the agricultural land-
scape.12 By comparing this spatially optimized situation with alternative situations, we find that
our approach leads to a considerably higher cumulative expected utility given the experimental
set-up of the analysis (Figure 3a.2). For instance, an agricultural landscape with only arable
crop farming (i.e., without agroforestry) leads to a loss of 19% in cumulative rewards compared
with the optimized scenario.

In the market scenario in which there is no prospect of a higher contribution margin,
the share of arable crop land increases at the expense of alley-cropping. This is espe-
cially true for the fertile regions in the middle of Bavaria (Figure 3b). In the policy sce-
nario, that is, with a guaranteed agri-environmental payment of €200 per ha (Figure 3c),
the share of agroforestry goes up to 60% of all available land. These land-use adjust-
ments also affect the cumulative expected reward for farmers, which is the highest in
the policy scenario. With the agri-environmental payment, the reward is 10% higher
than that of the baseline (see Table 2). However, this would likely result in relatively
high costs (compare Section 6.2).

14 APPLIED ECONOMIC PERSPECTIVES AND POLICY
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Land use allocation under climate projections

Figure 4 shows the potential adjustments in the three scenarios for the two climate
projections (RCP 4.5, RCP 8.5). Under the assumed climate projections, we found spatial adjust-
ments over time across projections and scenarios (Figure 4a). Under the RCP 4.5 climate projec-
tion and in the policy support scenario, the amount of alley cropping increases under the
climate change scenarios from initially less than 12% to approximately 27% in 2050. At the same
time, short-rotation coppice declines from more than 56% to less than 37%. Under RCP 8.5, the
missing prospect of a high contribution margin for alley-cropping negatively affects its

FIGURE 3 (a.1) Optimal land use allocation map for the baseline scenario at current climate based on the

decision tree upper confidence bound (UCB) algorithm. (a.2) Cumulative expected rewards of alternative land

use allocation rules compared to optimized baseline. (b) Optimal land use allocation map for the market

scenario at current climate based on the decision tree UCB algorithm. (c) Optimal land use allocation map for

the policy scenario at current climate based on the decision tree UCB algorithm.

AGRICULTURAL LAND USE MODELING AND CLIMATE CHANGE ADAPTATION 15
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adoption. Overall, our results suggest that the amount of agroforestry does not necessarily
increase under climate change, given farmers' preferences in 2020. However, regardless of the
scenario and GHG trajectories, we identified land use shifts over space.

Figure 4c highlights the importance of optimized land use allocation shifts in the face of cli-
mate change, as the cumulative expected reward can be maximized. Taking the baseline sce-
nario under the RCP 4.5 trajectory until 2050. By optimizing land-use planning, the expected
reward can be increased by approximately 10%. However, maintaining the land use allocation
of 2020, the expected reward decreases slightly and is approximately 20% lower than that in the
optimized situation. Arable crop farming alone also leads to an increase in the cumulative
expected rewards. However, it is considerably lower than that when it is spatially optimized. All
the scenarios presented in Figure 4c indicate that spatially optimizing land use leads to higher
overall rewards for farmers.

Because climate projections are inherently subject to large uncertainties (Tebaldi &
Knutti, 2007), we conducted several sensitivity tests to assess how our results differ across cli-
mate projections (see supplementary material section S.6).13 At the aggregate level, the cumula-
tive expected rewards are, in most cases, within the ±10% range of our model of choice.
However, looking at the land-use shares across scenarios, the results vary relatively strongly
(Figure S6). For example, if we consider the percentage overlap of raster cells across projections,
this metric can be as low as 40% and rarely exceeds 65% (see Tables S3 and S4). In summary,
considerable uncertainty surrounds the land-use projections presented in this section and
should thus be interpreted with caution. However, general observations such as the relocation
of land use in space and the stability of land-use shares over time, still hold true across models.

DISCUSSION

Modeling adaptation to climate change using reinforcement learning

Recommender systems based on reinforcement learning are successfully in use across various
industries (Silva et al., 2022). Our findings demonstrate that such a system may offer several
advantages also for land use modeling.

First, the mapping of context (here, behavioral and environmental data) to action (here, the
adoption of agroforestry practices) provides a novel perspective on the concomitant upscaling of
behavioral and environmental information. Upscaling of interrelated natural, institutional, eco-
nomic, and behavioral factors is an important challenge in land use modeling (Meyfroidt
et al., 2018). The algorithm applied here could complement existing modeling approaches at the

TABLE 2 Scenario comparison: percentage change in cumulative expected reward (ΔCER) compared to the

baseline land-use allocation, and percentage share of land-use types for the different scenarios.

Scenario ΔCER (%)

Share of land-use type (%)

Crop rotation Alley-cropping Short-rotation coppice

Baseline 0.00 51.89 23.54 24.56

Market �6.07 53.06 13.36 33.59

Policy 10.03 40.05 24.34 35.61

16 APPLIED ECONOMIC PERSPECTIVES AND POLICY
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macro level by mapping case-study-based local knowledge into larger areas, controlling for
the given context. This could provide leverage for in-depth research on the behavioral and eco-
nomic aspects of land-use decision-making by upscaling information to the spatial level at

FIGURE 4 Land use allocation under climate projections. (a) Spatial distribution of different land use types.

(b) Shares of land use types. (c) Development of the cumulative expected reward given different adaptation

assumptions. Rewards are normalized to the baseline scenario RCP 4.5 in 2020. RCP, Representative

Concentration Pathway.
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which policy decisions are taken. The approach could then be understood as an analogy to ben-
efit transfer in environmental valuation (Johnston et al., 2015). By utilizing contextual multi-
armed bandits, we can apply data-driven insights to a different context where there is a lack of
direct evidence or missing data.

The selected algorithm also allows for computationally efficient integration of behavioral
data from an economic experiment with spatially explicit environmental data. The integration
of such micro-scale data in a spatially explicit manner remains a major challenge in land-use
modeling (Troost et al., 2022). Our proposed approach allows the representation of individual
decision-making heterogeneity, capturing a diverse range of preferences that exist at the farm
level. This is in line with recent efforts to improve land-use models (Brown et al., 2021; Müller
et al., 2020; Müller-Hansen et al., 2017; Troost & Berger, 2014). However, the proposed contex-
tual multi-armed bandits algorithm has significantly lower computational demand. A single
model run takes no more than several seconds on a single processor, which is very short com-
pared with, for instance, agent-based models that include individual farm behavior (see Shang
et al., 2023; Troost et al., 2022). This offers significant potential for complementing and enhanc-
ing spatially explicit impact assessments because it would allow to address the criticism sur-
rounding current aggregate macro-models, which often rely on restrictive behavioral
assumptions (Müller-Hansen et al., 2017; Troost et al., 2022).

A significant challenge regarding the application of modern machine learning algorithms is
the lack of interpretability of their underlying mechanisms, which makes it difficult to compre-
hend how they derive their predictions. This can hinder our understanding of the underlying
mechanisms driving the predictions of these models, making it difficult to assess their reliability
and applicability (Molnar et al., 2020). In recent years, there has been a growing interest in
interpretable machine learning, a research field dedicated to developing methods that can
explain the decision-making processes of machine learning models (Molnar et al., 2020; Storm
et al., 2020). This development presents a promising avenue for exploring new applications of
machine learning in agricultural economics, with the potential to enhance decision-making
tools and optimize resource allocation.

Next, the land-use simulation approach presented herein is characterized by high flexibility.
The flexibility of integrating new data allows for the dynamic inclusion of new actions, such as
land-use types, additional explanatory factors, and more observations (Lu et al., 2010).
Depending on the research question at hand, land use modelers could also add additional con-
text such as information on farm structures, farmer behavior or environmental data, to train
the underlying algorithm. This flexibility is important as it allows the method to be updated in
light of the dynamic environment. As the algorithm observes more data and learns from the
outcomes, it can dynamically update its decisions to optimize the rewards. This adaptability is
beneficial when underlying reward distributions change over time. For example, farmers' pref-
erences could change over time (see Finger et al., 2023). This may not be captured well by alter-
native methods, such as econometric or supervised machine learning models. Among these
models, the learned model is usually static and may not easily adapt to changing conditions
without retraining (e.g., Burke & Emerick, 2015; Mérel & Gammans, 2021; Webber et al., 2020).

Finally, this approach provides ample opportunities for adaptation studies. While we
focused on land use here, this approach may also be valuable in other settings. This could
include modeling the adoption of novel technologies, social innovations, or sustainable farming
practices in an uncertain environment.

18 APPLIED ECONOMIC PERSPECTIVES AND POLICY
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Recommendations for supporting agroforestry practices in agriculture

Our simulations can provide recommendations for stakeholders (i.e., farmers, advisors,
policymakers) to plan climate adaptation using, for example, information, nudges, or policy
instruments. Ex ante assessments of climate and policy impacts on agricultural land use show,
in a spatially explicit manner, that the adaptation of agroforestry could provide utility to
farmers. Advisory services or policymakers could make use of such results by identifying poten-
tial hotspots (i.e., areas with a high certainty of benefits) that could be targeted, for example,
with spatially explicit advice or by tailoring agri-environmental programs to specific regions.

However, with respect to the policy support scenario, it is important to note that agri-
environmental payments might be relatively costly. For example, consider the result of the pol-
icy scenario in Section 5.2, which says that farmers' expected rewards could be increased by up
to 10% and cultivation area would potentially go up to 65% if farmers received €200 per ha for
cultivating agroforestry. Given the more than 200 million ha of cropland in Bavaria, this would
potentially result in a rough cost estimate of €223 million per year, which would be approxi-
mately 15% of the state budget for food, agriculture, and forestry (Bavarian State Ministry of
Finance and Home Affairs, 2023).

The spatially explicit evaluation of agroforestry cultivation potential considering farmers'
preferences and local weather history also underscores the importance of spatial planning in
addressing climate change impacts (compare e.g., Hurlimann & March, 2012). In our climate
scenarios, we found a rather small adaptation using agroforestry (the land use shares would
remain approximately constant until 2050). However, the spatial distribution varied signifi-
cantly in our scenarios. This is in line with Massetti and Mendelsohn (2018) and Cui (2020),
who argue that farmers will engage in dynamic spatial adaptation regarding their crop selection
as a result of a changing climate; that is, the spatial distribution of crops will change in response
to climate change. In summary, our results do not suggest “more” agroforestry in response to
climate change but implications for the “where” of agroforestry. Reallocating agroforestry sys-
tems can be costly and disruptive. This requires farmers to clear existing crops or livestock pas-
tures, prepare the land for trees, and plant trees (Cardinael et al., 2021). This can be a
significant financial investment and can require considerable time and labor (Valdivia
et al., 2012). In addition, the reallocation of agroforestry systems can disrupt existing agricul-
tural activities and may require farmers to adjust their production practices. These costs and
disruptions can pose obstacles to the ability of farmers to adapt to climate change (Valdivia
et al., 2012).

Limitations and further research

The first application of a recommender system in the context of land use modeling inevitably
comes with certain limitations. However, as discussed below, the flexibility of the approach pro-
vides new entry points for further research.

A critical issue is model performance, as in many other simulation approaches. The accu-
racy of predicting farmers' decisions was approximately 72%, which was considerably better
than that of random classification (54%). Given the fact that our model predicts a complex deci-
sion problem, this score is relatively high and similar to those found in comparable tasks such
as customer churn prediction, credit risk prediction, medical diagnosis, or crime prediction
(Byanjankar et al., 2015; Lalwani et al., 2022; Richens et al., 2020; Safat et al., 2021, e.g.).

AGRICULTURAL LAND USE MODELING AND CLIMATE CHANGE ADAPTATION 19
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Although predictive accuracy is important, it is not always the most important factor for projec-
tions because they are often made in complex and uncertain environments. It is difficult to
build a model that can accurately predict all the relevant factors, and even if the model is
accurate, it may become less accurate over time as the environment changes. We found a click-
through rate of 66%, that is, two-thirds of the recommended and consecutively chosen recom-
mendations could be correctly identified in the test data. This value is considerably larger than
most click-through rates found in industrial applications (Beel et al., 2016).

However, the performance of the proposed model can be further improved by optimizing
the algorithm (Yang & Shami, 2020). This might imply the inclusion of additional data, that is,
additional observations and/or additional contextual features that might have an impact on
farmers' land use decisions. One promising pathway in this direction is the increasing availabil-
ity pf open-source data on biophysical characteristics provided at a fine spatial resolution (Chi
et al., 2016). As discussed above, this is one of the major benefits of our proposed approach, as
it is very flexible in terms of integrating additional data and updating.

Another aspect of our results is that we mapped stated preferences from a choice experiment
(rather than observed preferences) to the adaptation of agroforestry. The advantage of using
experimental data is that we have a clear and identifiable link between attributes and prefer-
ences for the action in our simulation (i.e., the adoption of agroforestry). However, this setting
might also imply that we passed through potential biases from the experiment (e.g., selection
bias or hypothetical bias) to the simulations. The farmer population may not have the same
level of knowledge about agroforestry as the study participants, and may be more pessimistic
about potential profitability. This is attributed to the novelty of agroforestry in the study area
and the lack of widespread awareness among farmers. In real-world decision-making situations,
several factors can limit the adoption of agroforestry, such as within-farm rigidities, perceived
profitability, initial negative cash flows, credit constraints, transaction costs, market access, path
dependence, and land lease versus ownership (Giannitsopoulos et al., 2020; Glithero
et al., 2013; Staton et al., 2022; Valdivia et al., 2012). Further studies could also extend our
approach by using observed patterns (e.g., in a quasi-experimental setting) or data from other
modeling studies (e.g., more local agent-based models) that would reduce the hypothetical
nature of stated preference studies.

While our recommender system effectively utilizes weather/climate conditions and land use
attributes to provide recommendations, it currently lacks the ability to incorporate the costs
associated with land-use changes owing to the limitations of the cross-sectional data and the
absence of an intertemporal component. While we recognize the potential value of this infor-
mation, obtaining accurate and comprehensive data on land-use change costs is a significant
challenge. However, we believe that future developments in the recommender system can be
enhanced by incorporating such contextual variables, allowing for the evaluation of the eco-
nomic costs of different land use decisions. It could also be interesting to explore the potential
of combining recommender approaches with investment analysis techniques to gain a more
comprehensive understanding of land use decisions and their associated costs.

Another limitation is the model's inability to account for general equilibrium effects. Unlike
the recorded historical weather patterns used to train the model, future climate change will not
only impact farmers in a specific area and time but also have far-reaching consequences for the
entire agricultural sector—nationwide or even globally. These widespread changes inevitably
influence agricultural input and output prices, phenomena that a model trained on micro-level
data cannot adequately predict. Future research could include general equilibrium effects by
developing scenarios that account for such effects.
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It is also be important to consider rewards other than farmers' utility. Given the
multifunctional nature of farming (Renting et al., 2009), this view may be overly farmer-
centered. Nevertheless, our approach allows the adjustment of the reward function to account
for example, for ecological sustainability and societal goals, given the required farm- or field-
level data (Chi et al., 2016). Finally, another factor that should be considered when interpreting
our results is that we had to assume a stable reward distribution until 2050. While it is outside
the scope of this study, further scenarios could be evaluated by adjusting farmers' preferences
over time.

Another critical issue relates to the chosen case study for the proposed approach. The data
are specific to Bavarian farmers, implying a restricted scope of factors and a relatively small
sample size. Consequently, the model's direct application to policymaking beyond Bavaria is
limited and should be considered when interpreting the empirical results of this study.

Finally, future research should incorporate policy costs associated with land-use changes
into their analyses. This can be achieved by gathering more precise predictions of the acreage
potentially devoted to each land-use alternative. For example, Gillich et al. (2019) obtained
information on the maximum acreage that each farmer was willing to dedicate to novel land-
use types through a survey. Modifying the choice experiment to include field-level contextual
data would further allow for field-level land use predictions. In both cases, agri-environmental
payments could be directly linked to total acreage, potentially providing a more accurate esti-
mate of policy costs.

CONCLUSION

We provide a novel approach to land use modeling based on reinforcement learning. Our pro-
posed method is computationally efficient and spatio-temporally explicit and can account for
farmers' behavioral characteristics and biophysical information. To exemplify the potential use
of contextual multi-armed bandits in land use simulation modeling, we integrate the findings of
a choice experiment regarding novel climate robust land use types, that is, agroforestry, in crop
farms located in Southeast Germany. We found that variations in climate, market, and policy
conditions could prompt spatial shifts in the potential cultivation of agroforestry systems. Spe-
cifically, agroforestry systems have been identified as a viable strategy for climate change adap-
tion. Neglecting to adapt to climate change through adaptive land use adjustments or
maintaining conventional arable crop farming practices may lead to significant cumulative util-
ity losses.

Our analysis has important implications for famers, advisory services, and policymakers.
First, our results show the potential relevance of agroforestry as adaption strategy to climate
change by creating synergies between adaption capacity and farmers' utility. This information
can be used to spatially target information campaigns and identify target policy groups. The
proposed modeling approach can be used to advance the models currently used for ex ante pol-
icy analysis by upscaling existing knowledge on farmers behavioral characteristics and combin-
ing it with spatially explicit environmental and farm structural data. This would allow
efficiently projecting economic, farm-level land-use decisions into space while considering
behavioral factors and assess policy implications. This way, policymakers and stakeholders can
gain valuable insights into the spatial and temporal dimensions of decision-making processes.
This approach also bridges the gap between micro-level assessments and macro-level projec-
tions, enabling them to design context-specific strategies to effectively address climate change
adaptation while accounting for regional variations and temporal dynamics.
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Our analysis has several implications for future research. The here developed interface of
machine learning, experimental economic and land use modeling is an area of increasing rele-
vance. The integration of additional data sources such as information on farm structures,
farmer behavior, or environmental data could further enhance the approach in this study. This
methodology can be applied to data from other regions, ideally with more variables and obser-
vations, to provide valuable insights for local policymakers. Moreover, the application of the
proposed method extends beyond land-use modeling, encompass emerging technologies and
sustainable farming practices. Finally, integrating the proposed approach with evaluations of
agricultural policies holds promise for generating valuable insights into effective policy
targeting, thereby driving optimal outcomes in the agricultural sector.
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ENDNOTES
1 Tech companies such as Netflix, Spotify, or Google use such recommender systems to provide personalized
recommendations. These systems can analyze vast amounts of user data, including viewing or listening his-
tory, preferences, or ratings, to generate tailored recommendations for individual users. These recommenda-
tions include suggesting movies and TV shows on Netflix, curating personalized music playlists on Spotify, or
providing relevant search results on Google (Silva et al., 2022).

2 It is defined as yearly revenues (i.e., yield times crop price) minus the associated variable cost. It does not
include fixed costs or subsidies (compare Gillich et al., 2019).

3 Reinforcement learning, along with supervised learning and unsupervised learning, forms one of the funda-
mental paradigms of machine learning (Athey & Imbens, 2019; Storm et al., 2020).

4 The fact that the context can be described by spatially explicit biophysical information makes it useful for land
use modeling. It enables the upscaling of farm‐level data into a spatial dimension (compare Section 5).

5 The order in which the instances are supplied to the algorithm during training does not affect the final out-
come since we use all sampled farms to train the algorithm. However, if we were to update the algorithm
using novel information, the order would become relevant.

6 Business‐as‐usual arable crop farming is defined as standard three‐part crop rotation as widely practiced
throughout Bavaria and to which farmers can relate well.

7 Stetter and Sauer (2022) conduct an in‐depth analysis of the discrete choice experiment based on the same
data as in this study.

8 In Li and Ortiz‐Bobea (2022) a data‐driven cross‐validation approach was proposed to determine the growing
season. This approach is particularly relevant to large regions. However, in the context of the relatively small
region under consideration here, the impact of attenuation bias is deemed negligible.

9 RCPs are trajectories depicting future greenhouse gas concentrations and pollutants resulting from human
activities. They quantify greenhouse gas levels and radiative forcing, reflecting the additional energy absorbed
by the Earth due to climate change pollution. RCP 2.6 signifies substantial emissions reduction efforts, RCP
4.5 assumes moderate emissions reductions by 2100, and RCP 8.5 represents a trajectory of ongoing rapid
greenhouse gas emissions throughout the 21st century (van Vuuren et al., 2011).

10 Uppercase letters describe matrices.
11 In this context, it is important to bear the subtle terminological difference between “forecast” and “projection”

in mind. Projections are understood as statements about what could happen in the future, given a set of
assumptions. Forecasts, on the contrary, are statements about the most likely future outcome, given the cur-
rent state of the world. Here, we present projections given potential future climate, market, and policy condi-
tions and no anticipation of future events (compare Saaty & Vargas, 1991).
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12 We focus here in particular on weather and climate impacts on farmers' utility. However, there are many
more factors that also matter for farmer welfare and decision‐making (see also Section 6.3).

13 It is a challenge to model potential future land‐use when there is no historical precedent. This is a difficult
problem because it requires us to extrapolate beyond our current knowledge and understanding. However, by
using multiple climate projections and accounting thus accounting the uncertainty and variability in climate
projections, we can get a better understanding of the range of possible outcomes. However, we emphasize that
these projections represent potential scenarios, and not definitive forecasts. Therefore, a literal interpretation
of our results should be avoided.
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