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Abstract Climate change impacts food production systems, particularly in locations
with large, vulnerable populations. Elevated greenhouse gases (GHG), as well as
land cover/land use change (LCLUC), can influence regional climate dynamics.
Biophysical factors such as topography, soil type, and seasonal rainfall can strongly
affect crop yields. We used a regional climate model derived from the Regional
Atmospheric Modeling System (RAMS) to compare the effects of projected future
GHG and future LCLUC on spatial variability of crop yields in East Africa.
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Crop yields were estimated with a process-based simulation model. The results
suggest that: (1) GHG-influenced and LCLUC-influenced yield changes are highly
heterogeneous across this region; (2) LCLUC effects are significant drivers of
yield change; and (3) high spatial variability in yield is indicated for several key
agricultural sub-regions of East Africa. Food production risk when considered at the
household scale is largely dependent on the occurrence of extremes, so mean yield
in some cases may be an incomplete predictor of risk. The broad range of projected
crop yields reflects enormous variability in key parameters that underlie regional
food security; hence, donor institutions’ strategies and investments might benefit
from considering the spatial distribution around mean impacts for a given region.
Ultimately, global assessments of food security risk would benefit from including
regional and local assessments of climate impacts on food production. This may be
less of a consideration in other regions. This study supports the concept that LCLUC
is a first-order factor in assessing food production risk.

1 Introduction

Assessing food production variability—a key element in food security risk—for
developing nations is vital for policymakers, natural resource managers and non-
government organizations (Parry 1990; Parry et al. 2004). Changes in climate due
to enhanced greenhouse gases (GHG) are expected to have widespread impacts on
food production in many regions (Lobell et al. 2008; Burke et al. 2009); indeed,
GHG-driven climate change in East African region is likely underway now (Boko
et al. 2007) impacting the livelihoods of millions of people. Climatic responses
associated with increasing concentrations of GHG in East Africa are complex
(Neilson and Drapek 1998) yet are generally expected to nudge the region towards a
warmer and wetter state (Hulme et al. 2001).

Considerable research has recently focused on the potential impacts of climate
change on food production (Parry et al. 1999; Livermore et al. 2003; Funk et al. 2005;
Rosegrant et al. 2005; Tiffin and Xavier 2006; Thornton et al. 2009, among others).
To date, many of these studies have been global in scope, often conducted using
(1) empirical, linear models (e.g., Lobell and Field 2007) relating food production
and climate variability and (2) input from climate models at coarse scales, usually
from General Circulation Models (GCMs) either directly, downscaled, or aggregated
(Lobell et al. 2008; Funk et al. 2008).

However, as many of these researchers have suggested, these approaches have
several limitations. First, the scale and heterogeneity of climate impacts on food
production may not adequately capture variability that is important in locations
where technological capabilities and adaptations are limited and crops are grown
for local subsistence. It is well known that GCMs (typically run at grid spacings
of ∼120 km or coarser) cannot simulate atmospheric dynamics associated with
landscape variability. Second, impacts due to changes in land use and land cover are
generally not explored. Third, atmospheric impacts caused by land cover and land
use change (LCLUC) in parallel with changing greenhouse gas concentrations could
also affect crop yields.

Recent efforts to prioritize climate change adaptations from the food security
perspective are needed (e.g. Funk et al. 2008; Lobell et al. 2008) but lack important
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contributions from regional landscape heterogeneity that impact crop yields as they
are assessed at fine resolutions. These complexities are evident in the strongly
contrasting conclusions about East African food security as reported by Lobell
et al. (2008)—who find East Africa insulated from increased risk—and Funk et al.
(2008), who find “dangerous increases” Eastern and Southern Africa’s food security
risk. Thornton et al. (2009) argue strongly against using large spatially contiguous
domains, such as those at national scales, to examine adaptations in regions with
large variations in topography and average temperature.

Several physical features also contribute to East Africa’s high local variability
in climate: highly variable topography ranging from sea level along the coasts
and the African Rift Valley to large continental volcanoes, expansive inland lakes
(Anyah et al. 2006), complex seasonality associated with Indian Ocean influences
(Black et al. 2003; Black 2005; Anyah and Semazzi 2007) and complex equatorial
circulations (Ogallo 1989; Mutai and Ward 2000; Camberlin and Philippon 2002)
that create conditions favorable for double cropping near the equator and single
cropping at the northern and southern extents of the region. In this study we integrate
fine resolution, spatially explicit crop-climate-land use models that incorporate the
complex spatial heterogeneity of East African systems so that we can explore future
climate change effects due to GHG and LCLUC on food production risk.

A second limitation of climate-food production studies conducted to date is that
GCM-statistical climate-food production models miss important feedbacks that may
result in systems where land use/cover change may alter local and/or regional climate
dynamics. Several studies have demonstrated that Land Cover and Land Use Change
(LCLUC) alter surface albedo which in turn may influence local and regional climate
dynamics (Charney et al. 1977; Lofgren 1995; Semazzi and Song 2001). Thus LCLUC
can exert an important influence on regional climate (Pielke et al. 2007; Anyah et al.
2006) and even the vegetation response to rainfall (Serneels et al. 2007), possibly
with positive or negative feedback patterns. Besides GHG, LCLUC is also a primary
driver of climate change at local to—in some cases—much larger scales (Feddema
et al. 2005; Pielke et al. 2002; Maynard and Royer 2004). Land historically used for
animal grazing in East Africa is being converted to cropland, and urban areas are
expanding dramatically. These trends are expected to continue in the future (Olson
et al. 2004; Mundia and Aniya 2005; Olson et al. 2007). Thus, LCLUC effects may
moderate or amplify the GHG effects on climate change (Li and Mölders 2008).
Anthropogenic effects include LCLUC.

Finally, crop yields are a function of many different biophysical factors (cf. Boyer
1982; Boote and Sinclair 2006; Hay and Porter 2006) including temperature, rainfall,
length of season, and nutrient availability, among others. The interaction of these
variables is known to be complex and likely nonlinear, and, as such, may not be
well explained by linear statistical models. Relying on process-based models instead
may help to better understand how complex climate patterns in addition to nutrient
limitations may impact livelihoods of people in developing countries limited by
technological solutions. Although pests, diseases and natural hazards are absent in
most crop models, and there are concerns about reliability (Boote et al. 1996), crop
models have been shown to be useful in understanding climate-crop interactions in
many regions, including East Africa (e.g. Thornton et al. 2009).

Here, we attempt to address the shortcomings of coarse spatial resolution as-
sessments of the impact of climate change on food security through high resolution



826 Climatic Change (2012) 110:823–844

studies of climate change, coupled to a process-based crop simulation model. Our
hypothesis is that land use/cover change feedbacks may alter an assessment of future
food production resulting singularly from GHG-induced climate change alone. In
addition, we test whether or not finer and coarse resolution evaluations strongly
differ. The work presented here is part of a larger project, the Climate-Land
Interaction Project (Olson et al. 2007), aimed in part at understanding the relative
variability and sensitivities of regional climate, crop yield, and human systems due
to GHG forcings and LCLUC each of which operate in very different but important
ways. Our objectives are threefold:

I. To test if spatially homogenous forcings (e.g. GHG forcings that show warming
everywhere) can result in complex, heterogeneous crop responses as a result of
spatial and temporal landscape heterogeneity.

II. To test whether spatial and temporal changes in temperature and precipitation
due to LCLUC produce yield changes similar to GHG effects.

III. To examine how a process-based, high-resolution modeling approach differs
from a coarse resolution statistical approach for estimating the impacts of
climate change on food production risk.

2 Models and methods

This study focused on the East African countries of Kenya, Uganda, Tanzania, Bu-
rundi, and Rwanda (Fig. 1). This domain spans dramatic changes in elevation, annual
rainfall, land cover, and soil type. As such, it is an appropriate location for examining
the effects of landscape heterogeneity on climate variables and crop yield. Figure 1a
shows average annual rainfall from the Worldclim data set (Hijmans et al. 2005), with
population distributions (Fig. 1b) following a similar spatial distribution. Figure 1c
is an estimate of maximum potential agricultural extent for maize that shows high
fragmentation and heterogeneity. In contrast, projected changes in annual rainfall
from the National Center for Atmospheric Research’s Community Climate System
Model (CCSM) 4.0 Scenario A1B from 2000–2009 to 2050–2059 (Fig. 1d) suggest a
wetter trend but do not reflect complex local and mesoscale atmospheric features.
The framework for examining the role of regional landscape heterogeneity on crop
yields required inputs of land cover change and climate change as illustrated in Fig. 2.
The elements of each model segment are described in more detail below.

2.1 Land cover/land use change modeling

We developed a hybrid land-use and land cover classification scheme (Torbick et al.
2006), in part, from Africover (2002) and with input from local African experts.
Workshops of experts were used as one of the sources of information on future
changes in land use; the basis for such future predictions was developed from a
number of anticipated development programs, strategies, and other factors ranging
from national to local scales. Landscapes for agriculture and urban were projected to
2050 using the artificial neural network and GIS based Land Transformation Model
(Pijanowski et al. 2002, 2005, 2009) using regional data on roads, elevation, soils,
rainfall, surface water and existing urban boundaries. Population data from the UN
(2007) were used to scale the amount of required rainfed agriculture to 2050. The
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Fig. 1 Key spatial aspects in simulating current and future variability of food production in East
Africa. a Average annual rainfall from Worldclim; b Population density from CIESIN (Center for
International Earth Science Information Network); c LCLUC projection of agricultural expansion
from 2000–2050 (yellow) and national parks (brown); d climate change projection of CCSM mean
annual precipitation from 2000–2050 under the SRES A1B scenario

model was developed at 1 × 1 km resolution. Overall, we projected that East Africa
would experience more than a doubling of total cropland by the year 2050. This is
an extreme case, pursued to elicit a strong signal/noise ratio for understanding the
scale of land change effects, and is not a likely outcome. This cropland expansion
resulted in a decrease in broadleaf forests, open and closed savanna, shrublands
and grassland. These were needed because of East Africa’s bimodal phenology

Fig. 2 Flow diagram linking
the land cover model, climate
model, and crop model
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for crops and other seasonal greening landscapes associated with “long rains” and
“short rains” precipitation. We did not investigate subvarieties of LCLUC such as
afforestation, pasture expansion, or silviculture. Increased agricultural expansion
in some places (e.g. southern Kenya/Tsavo) is not realistic but is a consequence
of extreme agricultural expansion; some small concessions like these were deemed
acceptable for the purposes of a sensitivity experiment.

2.2 Regional atmospheric modeling

We used the Regional Atmospheric Modeling System (RAMS version 4.4; Cotton
et al. 2003), a state-of-the-art limited-area atmospheric model. Our domain, 84 × 76
grid points, covered Kenya, Tanzania, Uganda, and several neighboring countries
at a 36 km horizontal grid spacing and a vertical domain (32 levels) stretched to
32581 m above mean sea level, with the lowest level thickness 100 m. We employed
the Kain–Fritsch convective parameterization (Kain and Fritsch 1993). Surface
and vegetation dynamics were governed by the LEAF-2 sub-model (Walko et al.
2000), and land cover parameters like albedo, fractional cover, etc were linked to
appropriate Global Land Classification (GLC) classes. Annual CO2 concentrations
and 6-hourly atmospheric boundary conditions for current and future climate were
from the CCSM 3.0 model (Scenario A1B) for the decades 2000–2009 and 2050–2059
(Collins et al. 2006). The increased rainfall over this time span in CCSM’s average
annual precipitation is shown in Fig. 1d. We explored climate impacts attributable
solely to GHG changes and to LCLUC. RAMS was thoroughly tested and evaluated
with recent observed data using NCEP forcings. Regionally specific fractional cover
and leaf area index (LAI) estimates developed from MODIS imagery (Wang and
Yang 2007) were incorporated to improve the regional atmospheric model’s perfor-
mance (Moore et al. 2009). Since Indian Ocean temperatures may strongly influence
coastal crop production (Funk et al. 2008), we included monthly CCSM sea surface
temperatures from the same scenario into RAMS and included a sizeable portion of
the Indian Ocean in our domain.

2.3 Crop yield modeling

To estimate the growth, development, and yield of crops under future and current
climate and landscape conditions, we used a deterministic, process-based simulation
model for maize. We used maize as a representative proxy food crop for the
region. We used the CERES-Maize crop model (Ritchie et al. 1998) as currently
implemented in version 4 of the Decision Support System for Agrotechnology Trans-
fer (DSSAT; ICASA 2007) for all crop simulations. CERES-Maize requires daily
precipitation, maximum and minimum temperatures, and incident solar radiation
data. Daily time series of these were generated with MARKSIM (a statistical weather
generator of daily data from monthly data; c.f. Jones and Thornton 2000) variables
for historical and projected future time frames. We produced monthly mean data
from RAMS outputs for the four decadal simulations in this study following the
methods described by Jones and Thornton (2003). Soils data were derived from Food
and Agricultural Organization soils map of world (FAO 1995) converted to a 30 arc-
second grid which identifies all agriculturally suitable soils based on FAO soil unit
ratings (FAO 1978) in the study region. We then used representative soils profiles
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from the International Soils Reference and Information Center’s World Inventory of
Soil Emission Potential Data base (Batjes and Bridges 1994) as modified by Gijsman
et al. (2007) for each of the 18 km pixels in the domain where maize yield would
be simulated. We assumed current representative smallholder cultural practices for
maize cultivation; planting was assumed to occur automatically once the soil profile
has received a thorough wetting at the start of the rainy seasons, and the crop
was planted at a typical density of 3.7 plants/m2. A nominal amount (5 kg/ha) of
inorganic N was applied to the crop at planting. CERES-Maize does not account for
the effects of pests, diseases and natural calamities such as hail. In this experiment,
maize production was simulated in major production areas of other crops (e.g. rice,
wheat, millet) as a proxy for productivity in general to assess yield sensitivity since
maize is the primary food crop in East Africa. Although our results have this inherent
inaccuracy of one-crop modeling and other crops may respond in different ways (c.f.
Thornton et al. 2008), this method still allows for testing whether or not regional
heterogeneity in GHG and LCLUC forcings has the potential to significantly affect
crop production. As responsiveness of C4 crop yield to doubling of CO2 from 350
to 700 PPM was in the range of 4.2% increase under adequate soil moisture as
summarized by Boote et al. (2010). In view of this marginal yield increase in C4 crops
under adequate soil moisture due to CO2, we did not consider it in our simulation
studies.

For comparing climate change effects on maize yield using a coarse resolution
approach, we followed the technique of Lobell et al. (2008), as detailed in their
supplemental online material. To briefly summarize that technique, we derived
trends using the first-differences method (where year-to-year changes in modeled
data are added to baseline observed data) from the same CCSM data used in our
regional modeling to project climate (temperature and precipitation) to 2050. We
also used the first-difference method for FAO yield data for Kenya, Tanzania,
Rwanda, Burundi, and Uganda. FAO first-difference yield trends by country were
then aggregated for 2050. In cases where actual values were needed instead of
differences, we used CCSM changes superimposed on Worldclim climatology to
tether the data to the real world. The point of the exercise was to test if finer time
scales and spatial scales would give a significantly different average result in food
yield, or if the yields would tend to be relatively insensitive to the scales of the
models.

2.4 Experimental design

To evaluate the relative effects of GHG and LCLUC changes at fine resolution, we
constructed four decade-long numerical land-climate simulation experiments:

Case 1 current GHG (CCSM 2000–2009), current land cover; “baseline simulation”
Case 2 elevated GHG (CCSM 2050–2059), current land cover
Case 3 current GHG (CCSM 2000–2009), expanded land cover
Case 4 elevated GHG (CCSM 2050–2059), expanded land cover

Case 1 provides a baseline for comparison under current CO2 levels using ClipCover
as the land surface. The two sensitivity experiments tested GHG impacts on yield for
future (2050–2059) climate dynamics under elevated CO2 levels (Case 2), LCLUC
impacts on yield under current CO2 levels (Case 3) and future LCLUC and GHG
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Table 1 Local characteristics and yield influencing factors in selected SOIs

SOI exhibiting an effect Characteristic of SOI Yield influencing factor

SOI 1: Burundi High elevation Low Tmax
SOI 2: Western Tabora High elevation Low Tmax
SOI 3: SE Lake Victoria Near Lake Low rainfall
SOI 4: Morogoro Sandy soils Nitrogen stress
SOI 5: Central Uganda High elevation (∼1200 m) High Tmax
SOI 6: Kenya highlands High elevation Low Tmax
SOI 7: Longido/Nairobi High elevation Low Tmax
SOI 8: Kilimanjaro High elevation Low rainfall
SOI 9: Voi/Mombasa Low elevation Low rainfall
SOI 10: Lamu coast Low elevation High Tmax
SOI 11: Rwanda High elevation Cool; long CGD
SOI 12: South Uganda Near lake Cloudy
SOI 13: Central Uganda High elevation Low rainfall
SOI 14: S. Lake Victoria Near lake Cloudy
SOI 15: Pangani High elevation Short CGD
SOI 16: East Mt Kenya High elevation Low rainfall
SOI 17: Lamu Coast Near water body Hot; low rainfall
SOI 18: Iringa High elevation Short CGD
SOI 19: Morogoro Sandy soils High rainfall
SOI 20: Dar Es Salaam Near water body Low rainfall

High elevation is defined as >1,000 m; low elevation as <1,000 m; increased temperatures cause a
decrease in growing season length, which can either increase yield (if currently cool) or decrease
yield (if currently warm)

combined (Case 4). Daily minimum temperature (Tmin), maximum temperature
(Tmax), and precipitation were input to the CERES-maize model. From these
simulations were calculated changes in yield, as well as additional variables like
crop growth duration (CGD), water stress and nitrogen stress. CGD is the length of
time (days) between planting and physiological maturity. Differences in yield due to
GHG effects (Case 2–Case 1) can be compared to estimates using a linear regression
model to determine if coarse-resolution results are similar to fine-resolution results.
Differences in yield due to LCLUC effects (Case 3–Case 1) will illustrate the possible
magnitude of land change effects on climate. We hypothesize that land change effects
have yield impacts of similar magnitude to GHG effects and ought to be included in
assessments of food production risk. Regional models are suitable tools to identify
areas of high sensitivity to GHG change and LCLUC. Since food security risk is
influenced by extreme climate factors, we also selected 20 SOIs (Subregions Of
Interest) displaying large changes in yield from each experiment to explore further
for this experiment; Table 1 lists these SOIs and salient characteristics.

3 Results

In order to demonstrate the utility of an explicit spatial high-resolution analysis of
climate change on maize yield, we illustrate yield changes associated with GHG
and LCLUC in 20 selected SOIs, 10 SOIs for each climate forcing. These SOIs are
the numbered colored polygons in Figs. 3 and 4 with SOI color indicating the main
variable responsible for the change in annual yield. The SOIs were chosen to show
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Fig. 3 GHG effects: average growing-season differences between 2000–2009 and 2050–2059 in: a
mean precipitation, b crop growth duration (CGD), c yield change for the study area, d average
maximum temperature, e topography, and f a histogram of yield change distribution for the 5 nations.
Increments shown on a through d are half of one standard deviation (s/2) for each scale. Numbered
Subregions Of Interest (SOIs) selected for high yield sensitivity are shown with colors indicating
the driving climate factors behind the yield changes: red warmer, blue cooler, purple change in
temperature and rainfall, black complex factors
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Fig. 4 LCLUC effects: average growing-season differences in: a mean precipitation, b CGD, c yield
change for the study area, d average maximum temperature, e topography, and f histogram of yield
change distribution for the 5 nations. Numbered Subregions Of Interest (SOIs) selected for high
yield sensitivity are shown with colors indicating the driving climate factors behind the yield changes:
red warmer, blue cooler, yellow decreased solar radiation, purple increased rainfall, grey complex
factors

which yield changes that are sensitive to a variety of conditions of a regional nature.
The overarching theme relating these 20 regions is heterogeneous yield response to
spatially homogeneous/spatially uniform forcings caused by GHG or heterogeneous
LCLUC forcings. That is, yield responses are strongly governed by regional and
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local features. Many of the selected areas are close to one another, yet they are
associated with different yields, different climate forcings, or both. The color of the
SOIs was assigned only if the change in the indicated climate variable changed more
than the 10-year standard deviation. Thus, these yield-climate changes are not simply
correlated, but infer causation.

3.1 Overview of spatial impacts of elevated GHG effects (Case 2)

Figure 3 shows changes in (a) growing season precipitation (PCP), (b) crop growth
duration (CGD), (c) yield, and (d) average growing season Tmax between 2000
and 2050 under elevated GHG conditions using current land cover inputs (i.e.,
Case 2). These variables were selected to illustrate their main influences on maize
yield. Topography in the study area is shown for reference in Fig. 3e. The PCP,
Tmax and CGD exhibit a very strong correlation with elevation. Under elevated
GHG, the East African highlands warm dramatically, accelerated crop development
leading to decrease in CGD. Warming in other areas (e.g. Morogoro in SE Tanzania)
was associated with smaller but important decreases in CGD, particularly in lower-
altitude areas that are already warm. However, PCP and CGD in Fig. 3 are associated
with complex and heterogeneous yield responses. Changes in PCP, Tmax, and CGD
do not translate to direct and obvious changes in yield; rather, the yield changes show
strong heterogeneity due to complex ways on the influence of driving variables.

Singly, PCP and CGD can affect yields significantly but together, their changes
lead to heterogeneous responses in yield which is not easily deduced from broad
features—for example, changes in PCP along with temperature change (influencing
CGD) drive both increases (i.e. around Voi/Mombasa) and decreases (i.e. in central
Uganda) in yield. In this example, increased precipitation near Voi/Mombasa alle-
viated water stress, thereby increasing simulated maize yields; however, in central
Uganda a modest decrease in growing season precipitation together with elevated
nighttime temperatures (which shorten the growing period) lead to a dramatic
decline in yield; with an already short growing period, any water stress combined
with a shortening of the growing period can rapidly shrink crucial phases of maize
development. Similarly, increasing temperatures can also cause both yield declines as
well as yield increases. Although warmer temperatures tend to contract the growing
season—causing yield declines in hot regions (for example, Central Uganda)—
warmer temperatures in the highland areas actually increase yields by improving
plant function especially during the grain-filling phase (for example, the Aberdares
and Mt. Kenya). Results shown in Fig. 3 indicate that complex yield changes are
associated with spatially uniform/homogeneous climate drivers. The average yield is
only part of the story; several locations show dramatic changes in yield. For example,
the histogram in Fig. 3f shows a broad distribution of changes in yield occurring
across the entire East African area plotted from values in 3(c) with a standard
deviation of 176 kg/ha (this is given as an indication of domain-scale variability)
which will be masked if only average yield is considered.

3.2 Overview of spatial impacts of LCLUC effects (Case 3)

Figure 4 shows changes between 2000 land cover and 2050 land cover in (a) PCP,
(b) CGD, (c) yield, and (d) Tmax under LCLUC due to expansion of agriculture
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into existing savanna conditions (i.e., Case 3). Simulated LCLUC in savannah areas
replaces moderate albedo grasses in the future that translate into higher albedo
bare soil for part of the maize growing season, and similar albedo maize later in
the growing season. This higher albedo under agricultural expansion leads to lower
absorption of shortwave radiation that leads to slightly cooler maximum temperature
as evident in Fig. 4d. These cooler maximum temperatures increase the growing
season and CGD. Topography is again shown in 4(e) for reference. Figure 4f shows
the distribution of yield change from 4(c; The gray vertical line is zero). The LCLUC
effects, on average, produced yield changes at a magnitude similar to those of GHG
effects (compare to Fig. 3c; see also Fig. 5d), but the climate changes associated with
LCLUC are more disaggregated and concentrated than GHG effects. The GHG
effects dominate extremes in yield change.

Although more obvious, these results show that heterogeneous changes in land
cover can cause heterogeneous maize yield changes. For example, SOI 15 and SOI 16
in Fig. 4 were both areas of cooler Tmax with time but had opposite responses in yield
change. A strong relationship with topography—both with elevation and proximity
to water bodies—is evident with the climate variables, although PCP changes are
more muted and influenced by proximity to water bodies (leading to increased
rainfall) or in steppe areas like Arusha in SOI 15 (decreased rainfall). Similarly, CGD
increases are closely linked to the highland areas but show more muted responses
elsewhere. Processed-based modeling is capable of capturing these relationships. As
a second example, the opposite yields in SOI 12 and SOI 13 are driven by differences
in solar radiation and rainfall despite both areas receiving similar increases in rainfall.
Again, the changes in yield respond differently in different areas despite a similar
climate forcing. The model results in Fig. 4c show that in some cases, large and broad
climate perturbations (e.g. Western Tanzania) led to no significant changes in yield.
Often, the model shows rainfall changes being driven by changes in convection, which
has been observed elsewhere (e.g. Allard and Carleton 2010).

3.3 Overview of combined GHG and LCLUC effects

GHG effects on climate dwarf LCLUC effects across much of the domain, and that
dominance extends to average yields in Case 4. Figure 5a–c shows the yield changes
due to individual and combined effects, given here in percentage terms. Individual
climate factors for Case 4 (not shown) are quite similar to Case 2 climate factors
shown in Fig. 3. Although the LCLUC effects on climate and yield are generally
smaller, they are not negligible. These areas are all important agricultural areas,
and yield changes there may have a large impact on food security. Although GHG
effects are clearly larger than LCLUC effects, LCLUC effects are not second-order
or negligible. Figure 5d shows the ratio of yield changes (ratio = LCLUC/GHG) to
illustrate where LCLUC causes a similar or larger impact on yields than GHG; a
ratio of one would indicate that LCLUC and GHG have an equal impact on change
in yield. Areas with marginal yields for Case 1 were omitted from the ratio, as were
small values for GHG effects to avoid curiously small denominators. Both green
and yellow represent areas where LCLUC impacts are larger than GHG impacts
(i.e. |ratio| > 1). Green is used for increased yield in an LCLUC-dominated area;
yellow is used for decreased yield in an LCLUC-dominated area. Grey represents
areas where LCLUC impacts are less than GHG effects (i.e. |ratio| < 1). For
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Fig. 5 Percentage change in
maize yield compared to the
baseline simulation (Case 1)
for: a GHG effects/Case 2,
b LCLUC effects/Case 3,
and c Combined
effects/Case 4. d Yield
change of Case 4–Case 2,
which shows the role of
LCLUC in perturbing
GHG effects
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Fig. 5d, approximately 30% of the domain is not dominated by GHG effects alone;
this demonstrates that LCLUC factors are of first-order consideration for food
production.

Fig. 6 a Changes in selected climate variables for the 10 GHG regions (left) and the 10 LCLUC
regions (right) outlined in Figs. 3 and 4. Values along the bottom of each graph give average values
from the baseline simulations to help understand the importance of the change. Red decreasing yield
SOI, black increasing yield SOI. Each region has at least 30 pixels. b The same data re-plotted to
show the lack of correlation between the individual climate forcings and the simulated yields
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3.4 Complex drivers of yield change

Many different yield changes occur despite similar climate forcings, as shown in
Fig. 6a. For example, PCP in much of the highland areas decreases, leading to regions
of both increased and decreased yield. This is illustrated in Fig. 6a, left panel, where
SOIs 2, 5, and 6 all show decreased precipitation, though SOI 5 has a yield decrease
and SOIs 2 and 6 show yield increases. These contrary results occur because of other
factors—such as temperature increases in the case of Central Uganda. Similarly,
at lower elevations, central-eastern Kenya (semi-arid SOI 16) and SW Tanzania
(extremely rainy near the Zambia border, not an SOI) show opposite responses in
yield despite enhanced rainfall in both locations. Changes in Tmax and CGD are
very strongly correlated, but these are both shown because in some cases Tmax
may change significantly while CGD does not (e.g. SOI 16) or vice versa (SOIs 11
and 13).

In some instances, seemingly contrary results (e.g. SOI 8: less rainfall, but a yield
increase) occur for the same selected regions. This occurs when averages over the
growing season do not reflect daily differences in rainfall intensity, cloudiness, or
other factors. For our first example, under LCLUC effects, Southern and Central
Uganda (Fig. 6a, SOIs 12 and 13) both receive increased rainfall and are near one
another. However, the yield changes are opposite in sign, and the increased yield in
Central Uganda is due to additional rainfall while the decline in yield to the south
is due to decreased temperature and decreased solar radiation (not shown). Under
GHG effects, our second example, a similar counterintuitive response is also evident
for GHG in SOIs 9 and 10 which both undergo large increases in Tmax. SOI 9
receives a small amount more rainfall (and at timely intervals during the growing
season, while SOI 10 receives no significant additional rainfall, thus reaching high
levels of water stress and high temperatures stress. Curiously, a large increase in
rainfall between SOIs 6 and 10 (Fig. 6 shows a large decrease in PCP in SOI 6 and no
change in SOI 10) leads to different yield changes—an increase in higher altitudes,
a mild decrease in lower altitudes (see SOI 10 in Fig. 4a—already marginal), and no
change in others. This reiterates that even modest simulations of food production
can display a variety of counterintuitive outcomes that depend sensitively on local
and regional conditions.

Figure 6b is a further illustration that these variables show very low correlation at
regional scales. The horizontal axis is the same for all three panels. Although distinct
differences are evident between GHG and LCLUC effects, their relative forcings
show no evident pattern.

3.5 Coarse-resolution versus fine-resolution approach/assessment

One of objectives in this study was to compare a coarse-resolution assessment to
a fine-resolution assessment (Fig. 7) for East Africa. For the sake of comparison,
this figure shows regional average change in yield derived from a coarse-resolution
linear approach (done by reproducing crop yield estimates forced by GCM data (see
Methods, Section 2.3 for details) compared to a dynamically downscaled regional
climate model coupled to a process-based crop simulation model. The linear regres-
sion model R2 was 0.24; while the regression coefficients were 3.81 for temperature,
0.0005 for rainfall, and 5 × 10−5 for the cross-term. Each bar represents the average
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Fig. 7 Ranges of yield change variability comparing a linear statistical model versus integrated
models that compare climate and land cover/use change. The top bar graph shows estimated GHG-
driven yield change with a simple regression model; the middle bar graph shows an opposite
response using regional process-based models; the third bar graph shows the effects of LCLUC using
regional process-based models. Standard errors are (top) ±8.9 kg/ha, (second) ±17.8 kg/ha, (third)
±11.5 kg/ha, and (bottom) ±17.9 kg/ha

regional yield change from current to future conditions using the same GCM data.
The error bars represent the standard errors for each ten-year sample. These two
approaches are substantially different. That is, the coarse approach aggregates yield
(or yield response) over large areas, assumes linear relationships between climate
and yield, and tracks only the average values for the region. The fine-resolution
approach is disaggregated to respond to spatial variability, explicitly calculates the
nonlinear climate–yield relationships, and keeps an account of spatial variability
in addition to national average yield values. In order to compare the regional
simulations with the coarse model results, we aggregated finer resolution assessment
results of this study to the national level, and compared the statistics of several
countries together: Kenya + Tanzania + Rwanda + Burundi + Uganda.

As a result of these substantially different inputs and methods, the finer-resolution
GHG forcings and LCLUC forcings show different responses (the lower three bar
graphs) from one another and from the coarse-resolution approach (Fig. 7). The
finer resolution approach of modeling of GHG effects produced a yield difference
standard deviation of 176 kg/ha (see Fig. 3f). Using the linear regression model as
described in the Methods section, the yield difference standard deviation due to
GHG would be 79 kg/ha—much smaller. Standard deviation and standard error are
key measures of variability; a lack of change in mean yields does not imply a lack of
change in yield variability. Here, the mean values are different (though statistically
no different from zero)—but more importantly, the variability is much greater for
the regional experiments and better captures climate change effects than the coarse-
resolution approach (c.f. Thornton et al. 2009). Furthermore, aggregate expressions
of yield change, in and of themselves (as in Fig. 7), are an incomplete description
of yield changes and food risk; the spatial distribution and causative factors are also
needed.

4 Discussion

This paper illustrates three important factors that need to be considered when
making estimates of food production and risk due to future climate change. First,
heterogeneous responses in yield can result from homogeneous climate drivers.
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Second, LCLUC can also significantly influence crop yield at a scale similar to GHG
effects. Third, a process-based fine-resolution framework can produce different
distributions of variability in yield. This third point has been shown before (e.g.
Jones and Thornton 2003; Thornton et al. 2009) but it is an important element in
determining risk—i.e., regional variability (and thus risk) is large and may be masked
at coarse resolution. Since food production risk is primarily associated with the
occurrence of extremes, a high-resolution approach exhibits much higher sensitivity
to yield changes as well as much higher spatial variability.

We used a process-based deterministic crop model, driven by a deterministic
regional climate model, with inclusion of two drivers of climate change. With models
that incorporate process-based factors, some explanatory power is gained by looking
at aspects like water stress or nitrogen stress, which are taken into account by the
crop-climate model. This crop model is deterministic; thus a change in yield can be
traced directly to the change in a climate variable (or variables) that caused the
yield change. This is also true for linear regression models, but processed-based
models allow us to examine causality as well as complex, nonlinear factors. For
many climate changes, smaller percentage impacts (e.g. those less than 10%) are
simply not significant, particularly given all the possible errors involved. Even large
changes in climate forcings—like a large increase in rainfall—may not be significant
because of other factors (e.g. sandy soils or hot growing-season temperatures) that
may be poorly handled by crop models. However, some significant changes do
emerge even though the aggregate histograms in Figs. 3f and 4f center about zero.
Comparing yield changes in Figs. 3f and 4f, greater food production variability was
obtained using this higher resolution approach that would not be evident using data
aggregated to the national level (see Fig. 7). Furthermore, Fig. 7 only displays spatial
variability, not inter-annual variability. The strength of a fine-resolution/regional
approach is ultimately in its ability to identify regions and physical causes for elevated
food production risk via localized trends in yield change, which could lead to more
effective use of donor investments for alleviating hunger and poverty.

How much trust can be placed in these model results? Both the crop and climate
models are limited in their abilities to reflect reality. These models are limited by the
quality of the input data, their accuracies in parameterizing complex processes like
turbulence or the grin-filling stage, and their outright non-use of factors like pests
or subgrid-scale phenomena. Heterogeneity of our model responses is complicated
too; since no spatially explicit data on crop yields in east Africa are available, it is
very difficult to validate crop model yields except at aggregated (i.e., national) levels.
Even then, national estimates in Uganda, Kenya and Tanzania are often based on
very rough estimates for yields in more rural areas. Without good ground truth,
it is quite possible that our model results could over-estimate the heterogeneity
of the responses to the LCLUC and GHG forcings. However, these are process-
based models. They have been built carefully and validated against ground truth in
many locations. We can examine the reasons and causality for a change in yield.
For example, if we examined maize yield near Mwanza, we can check the model to
see that nitrogen stress is the reason for a given decline in the model. Thus, while
the response heterogeneity could be overestimated, the responses are not “noise”
or just a side effect of simple models forced by strong anomalies. The forcings are
within reasonable range of actual weather values and they are broadly consistent with
observed historical trends. The historical crop responses fall well within expected
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ranges for real maize yields in east Africa. Thus, the changes we see in the modeled
yields broadly reflect possible changes caused by climate forcings from LCLUC and
GHG. For further information on the limitations of these models, several model
intercomparison projects (MIPs) that include RAMS are available that describe
model shortcomings. For CERES, validation can be found in numerous publications
including Jones et al. (2003).

These model projections are intended mainly to illustrate variability and the im-
portance of LCLUC as a driver of yield change. Since the projections are peculiar to
one particular future landscape and scenario, the specific patterns we find should not
be used to plan adaptations. Rather, they can inform how we plan adaptations—by
encouraging more spatially explicit measurements of climate trends in specific areas,
by suggesting several pilot programs for different crop breeds, and by promoting
more local (in-country) modeling of crop yields by scientists who are familiar with
local trends, local breeds, and habits of local agriculture. The projections shown here
do not have sufficient resolution or generalization to plan adaptations, but they do
point to areas that may show climate sensitivity; these areas would benefit from more
climate and crop monitoring.

We have demonstrated that high-resolution spatial characteristics (such as sandy
soils, nitrogen inputs, etc) exert important constraints in understanding the system’s
climate shifts and resultant yield changes. These factors can play different roles
under GHG forcings or LCLUC forcings. The context of projected yield change
must be examined as well—for example, valuable cash crops like coffee and tea
should not (and certainly will not) be abandoned in Kenya’s highland areas merely
because conditions are more suitable for a cereal crop. In the Kenya highlands, even a
projected gain (of maize yield) is not necessarily enough to transform the agricultural
systems there because farmers decide land use in a context of culture, economic
forces, and sophisticated relationships within their societies. While our extreme case
of massive LCLUC here ignored some socioeconomic constraints related to major
protected areas (important for tourism), it was done to illustrate the sensitivity of
certain areas.

Since our results show complex impacts, the ability of livelihood systems to adapt
or mitigate climate change effects may depend on the character of the drivers most
influential for the locality (e.g. Table 1) and the adaptive capacity of the human
system in question. Thoughtful land use and land management could thus play a
major role in coping with climate change and adapting human livelihood systems,
such as decentralized ranching and shifts in crop production areas. We only inves-
tigated consequences for maize production; other impacts on human systems (e.g.
water availability, livestock health, invasive species) may also reflect climate shocks
with similar GHG, LCLUC, or coupled spatial responses. These are indicative of
complex features and responses of the complex natural-human systems, warranting
further study of savanna ecosystems.

Diffenbaugh et al. (2005) state “consideration of fine-scale processes is critical
for accurate assessment of local- and regional-scale vulnerability to climate change.”
Our analysis reinforces this perspective. Addressing Objective II, we also show
that future LCLUC is a first-order driver of yield change via modification of the
surface energy budget (e.g. Seneviratne et al. 2006). Our results indicate that (1)
crop yield can exhibit complex responses to broadly homogeneous climate forcings
like elevated GHG influences, and (2) LCLUC-driven climate forcings are capable of
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driving yield changes similar in magnitude to GHG that also exhibit highly complex
heterogeneous responses. The magnitude of the changes in yield modeled here are
quite high, suggesting that LCLUC plays a critical role in food production risk. The
choice of regional climate model can also strongly affect the outcomes of such studies,
and this is an important element to consider in developing these types of studies
(Oettli et al. 2011).

Quantifying the variability in yield plays a critical role in the assessment of food
production risk—in turn a critical aspect of food security risk. From the perspective
of sustainability and understanding agricultural productivity, it is important that
donor institutions consider matters of land use, scale/resolution, heterogeneity, and
representativeness when evaluating comparisons of responses in different regions or
continents to climate change. Despite some drawbacks, process-based crop models
might be used when appropriate to examine variability in regional food security
risk and to understand which climate factors, including LCLUC, are of paramount
importance to the farmers on the ground. Finally, and perhaps most importantly, we
recommend that climate impacts of LCLUC be considered as a primary driver of
food production risk.
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