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Abstract

Sugarcane industries worldwide are exposed to uncertainty associated with variable climate.
This variability produces impacts across an integrated value chain comprising of the following
industry sectors: cane growing, harvesting and transport, milling, and marketing. The purpose

of this paper is to advocate a comprehensive systems approach for using seasonal climate
forecast systems to improve risk management and decision-making capability across all
sugarcane industry sectors. The application of this approach is outlined for decisions relating
to yield forecasting, harvest management, and the use of irrigation. Key lessons learnt from

this approach include the need for a participative R&D approach with stakeholders and the
need to consider the whole industry value chain. Additionally, there is the need for climate
forecast systems to target the varying needs of sugarcane industries.
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1. Introduction

Sugarcane industries worldwide are located in regions of uncertain and variable
climate. Dealing with this climatic variability is important to profitable and sus-
tainable sugarcane production because stability of income from year to year affects
the risk of farming and milling operations. Potential exists for seasonal climate
forecasting to improve risk management and decision-making leading to enhanced
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industry competitiveness. Seasonal climate forecasting tools are increasingly used in
risk management for annual cropping systems such as peanuts (Meinke and Ham-
mer, 1997), maize (Singels and Potgieter, 1997), wheat (Hammer et al., 1996) and
cotton (Dudley and Hearn, 1993). It is only more recently that the potential applic-
ability of climate forecasting for perennial crops and sugarcane in particular, has
been investigated (e.g. Everingham et al., 2001a,b; Hansen et al., 1998; Pulwarty and
Eischied, 2001; Singels and Bezuidenhout, 1999).
Sugarcane is a tropical plant that is grown under diverse climates throughout the

world, from sea level to 1500 m at latitudes between 36.7�N and 31.0�S. Humbert
(1968) describes the ideal climate as a long, warm growing season and a fairly dry,
sunny, cool, but frost-free ripening and harvest season, free from hurricanes and
typhoons. Sugarcane industries are comprised of an integrated value chain com-
prising of growing, harvesting and transport, milling, and marketing sectors, and
climate impacts across each of these sectors. Accordingly, the most appropriate cli-
mate forecasting system for tactical and strategic management across the industry
value chain (farming, harvesting, milling, marketing sectors) is very much dependent
on what decision point and what industry sector is being targeted.
By considering a system for the whole of industry, i.e. taking a comprehensive

systems, or whole value chain approach (Muchow et al., 2001), the integration of
seasonal climate forecasting with management strategies has the potential to benefit
sugar industries in many areas, and in particular by:

1. Improved on-farm profitability by better use of scarce water resources,
increased water use efficiency and higher sugar production, with minimal
movement of nutrients and pesticides off-farm reducing the potential harmful
environmental consequences of sugarcane production.

2. Improved planning for wet weather harvest disruption and early season sugar
supply and better scheduling of milling operations leading to more effective
use of resources, e.g. milling capacity, haulage equipment, shipping, together
with enhanced on-farm profitability.

3. Enhanced industry competitiveness through more effective forward selling of
sugar based on enhanced knowledge of amount of sugar supply and
improved efficiency of sugar shipments.

This paper describes a research approach for realizing these benefits through the
application of seasonal climate forecasting across the sugar industry value chain. The
research approach is demonstrated as part of three case studies focusing on irrigation
planning (Section 3), harvest management (Section 4) and yield forecasting (Section 5).

2. Research approach

The development of information alone, in the form of climate forecast systems,
will not necessarily realise benefits to sugarcane industries. We advocate adoption of
both a comprehensive systems approach and a participatory research process to best
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deliver enhanced risk management and decision-making capability based on seaso-
nal climate forecasts. The advantage of the participative approach is that it tends to
moderate against the frequent mismatch between knowledge systems of researchers
and the knowledge systems of industry end-users, and facilitates the integration and
adoption of scientific outputs to deliver industry benefits.
Taking a comprehensive systems research approach, we propose the following

framework: (1) Identify, in partnership with industry, the key decisions influencing
profitability that climate impacts. (2) Develop appropriate databases of climate and
industry sector performance. (3) Identify and establish the role of appropriate cli-
mate forecast systems for different geographical regions and industry decisions. (4)
Assess the capability of the climate forecast system to improve tactical decision-
making based on climate forecasting across different components of the industry
value chain. Finally, (5) implement the climate forecast system for enhanced risk
management and decision-making and identify how outputs from such a system can
be delivered or conveyed back to industry on a continuing basis.

2.1. Key industry decisions

An important prerequisite is to identify the key industry decisions influenced by
seasonal climate forecasts and how these decisions impact across the industry value
chain. Fig. 1 gives examples of decisions that the different industry sectors make,
seasonal climate forecasts can influence. Whilst decisions are made for the specific
components of the value chain, it is important to recognise that the chain represents
an integrated system. The decisions made for a single sector can affect each of the
sectors in the value chain.
We can consider three aspects of the impact of climate on the sugarcane produc-

tion system at farm level. Firstly, climate directly determines the processes of yield
accumulation and the amount of sugar produced. Secondly, climatic conditions

Fig. 1. The industry value chain and key decisions influenced by seasonal climate forecasts.
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influence the development and spread of fungal diseases, insects, pests and weeds,
which can restrict crop growth. Thirdly, climate, and rainfall in particular, sets the
potential for runoff and deep drainage with possible environmental impact asso-
ciated with the movement of nutrients and pesticides. If seasonal climate forecasts
can be applied and integrated into the farm management system, forecasting offers
the potential to improve farm management systems by improving yields, planting
opportunities, application of fertilizers, herbicides (Cifuentes, 1997), pesticides and
irrigation, all of which influence the ecological sustainability of sugarcane production.
Different farm decisions require climate forecasts for varying responses, lead-times

and forecast periods. Table 1 presents three examples of how climate forecasts could
be integrated with on-farm planning. These decision summaries were generated as
part of the participatory research approach with a group of cane farmers from the
Ingham (18.59�S, 146.25�E) sugar-growing region in Queensland, Australia. Whilst
lead-times and forecast periods are likely to vary for sugarcane growing regions
world wide, Table 1 does briefly illustrate some of the logic behind farmer planning
and how climate forecasts can be integrated with the decision making process.
The issue of when to plant (decision 1) is a key decision bearing major importance

to growers. In Ingham, farmers from predominantly wetter districts are concerned
of the plant crop failing due to extremely wet conditions following the plant. Such
farmers tend to plant in the months of July or August, but knowledge of future cli-
mate conditions can help farmers decide what planting strategies to employ. If at the
end of June, there was a high chance of being wet in July, farmers could consider
delaying the plant until August. This decision would then require knowledge by the
end of July, of the chance of high rainfall in September–November. Farmers noted
that if there was a high chance of high rainfall in September–November, they might
consider not planting at all, or modifying planting strategies to encourage rapid
germination.
Farmers from Ingham have also considered using climate forecasts to help decide

if and when to plough out the existing crop (decision 2). This decision was primarily

Table 1

A list of key decisions influenced by climate forecasts that was developed by local industry decision

makers in Ingham, Queensland, Australia

Decision Timing of forecast What is the chance of This information will help

1 End of June A high number of

rain events in July?

Farmers decide when to plant

and to identify appropriate

planting strategies

End of July A high number of

rain events in

September–November?

2 End of July A high number of

rain events in September?

Farmers from dry areas decide on

appropriate ploughout strategies

3 At time of

planting

Rain for the month following

planting will exceed 15 mm?

Farmers decide whether a

pre-emergent or knockdown

should be applied
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considered by farmers from dry areas in Ingham with no irrigation. These farmers
would consider ploughing out and replanting in August if at the end of July there
was a reasonable indication of rain events following the replant.
Once the cane is planted, there are two modes of herbicide action (decision 3) for

controlling weeds: a pre-emergent or a post-emergent (sometimes referred to as a
‘knockdown’) herbicide. If conditions following planting were more likely to be dry,
then farmers from Ingham would consider it more economical to apply a post-
emergent herbicide. Conversely, if conditions following planting are more likely to
be wet, thereby potentially restricting trafficability, then it would be more preferable
to apply a pre-emergent herbicide at the time of planting.
There is a need however, to consider seasonal climate forecasts beyond the farm

level, as sugarcane industries comprise an integrated value chain where climate
impacts on the harvesting and transport, milling, and marketing and shipping sec-
tors (Muchow et al., 1997). Knowledge of likely disruptions due to wet weather can
allow harvest managers to enhance and better plan harvesting strategies for the
coming season. Knowledge of the chance of high rainfall towards the end of the
harvest season, may call for farmers and harvest operators to rethink typical
harvesting strategies (see Section 4 for examples).
Rainfall forecasting would also be important for mill scheduling, which is sub-

jected to considerable disruption because mechanical harvesting requires dry condi-
tions. If there is likely to be rain interruptions during the harvest season then
marketers can also factor this into planning so as not to over commit sugar supplies
to customers.
A major issue for all sectors of the sugar industry value chain is predicting the size

of the crop. Since climate is a key driver of crop size, the ability to better estimate
yields by incorporating climate forecasts could for example, assist farmers with
planning fertilizer and irrigation regimes. Harvest operators and millers could better
plan for the likely start and finish of the season. If forecast systems could predict in
advance that there was going to be a large crop then the start of the harvest season
might be brought forward. This would be especially the case if the forecast system
would also indicate a high chance of wet weather at the end of the ‘normal’ har-
vesting period. Advance knowledge of crop size would also enhance forward selling
strategies for marketing plans. It is evident, that seasonal climate forecasts offer the
potential to improve many decisions that are made across the entire sugar industry
value chain.

2.2. Data acquisition and database development

There are three main categories of data needed to effectively integrate climate
forecasting with industry decision making: (1) climate-drivers such as the Southern
Oscillation Index (SOI) and sea-surface temperatures (SST); (2) crop-drivers such as
daily solar radiation, temperature, evaporation and rainfall; and (3) productivity
information such as total sugarcane production. Issues associated with each of these
forms of data include record length, missing values, spatial coverage and quality.
Once appropriate and accurate databases have been developed, it is then necessary

Y.L. Everingham et al. / Agricultural Systems 74 (2002) 459–477 463



to maintain and update the databases as more data become available. Following
this, climate forecast systems could then be considered.

2.3. Climate forecast systems

Climate forecast systems that are able to provide analogue seasons or years and
thus some forecast distribution have become increasingly utilized in agricultural
systems (Everingham et al., 2001a,b; Meinke and Hammer, 1997; Singels and
Bezuidenhout, 1999; Hansen et al., 2001). Analogue systems are increasingly used
since once the required analogue information is provided as output by the forecast
system, daily data can be extracted for radiation, evaporation, rainfall, and tem-
perature corresponding to that particular year or season. Thus, crop models can be
run using that set of seasons corresponding to certain analogues rather than relying
on the entire climate history for that season, location and application. An example
of two forecast systems commonly used to produce analogue years are the 3-phase
sea surface temperature (SST) system and the 5-phase Southern Oscillation Index
(SOI) system (Stone and Auliciems, 1992; Stone, et al., 1996). The 3-phase SST
approach (see for example Hansen et al., 1998, 2001) derives analogue years by
partitioning years that correspond to El Niño, La Niña and neutral conditions. The
5-phase SOI phase climate forecast system utilises pre-determined clusters of the
SOI representing patterns of variability in month-to-month values of the SOI. Five
clusters or phases of the SOI were identified as: ‘consistently negative’ (neg), ‘con-
sistently positive’ (pos), ‘rapidly falling’ (fal), ‘rapidly rising’ (ris) and ‘consistently
near zero’ (nz). The 5-phase SOI system typically derives analogue years by parti-
tioning years with the same SOI phase for those key months preceding the period of
interest and then comparing how the distribution of the response (e.g. rainfall)
changes among each of the phases.
For some locations, forecast accuracy can be increased by combining other ocea-

nic and atmospheric parameters with ENSO (El Niño-Southern Oscillation) para-
meters in the forecasting method. Jury (1998) used southwestern Indian Ocean air
pressure, north Indian Ocean surface meridional wind and Southern Ocean air
pressure in conjunction with the SOI during September to November to forecast
December to March rainfall for parts of South Africa. The South African Weather
Service (SAWS) also uses a combination of statistical (Landman and Mason, 1999)
and dynamic methods (Landman et al., 2001; Goddard et al., 2001) to forecast the
probability of 3-monthly rainfall totals falling into three categories namely below
normal, near normal and above normal.

2.4. Assessment

It is difficult to justify using a climate forecast system to enhance decision-making
capability if the climate forecast is unable to add value to current decision making
approaches. Assessing the capability of the climate forecast system to improve tac-
tical decision-making could be performed in many ways. This often involves eco-
nomic evaluations where the benefits and costs of tactical decision-making are
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computed. Since economic evaluations are very much dependent on specific deci-
sions for specific locations we do not provide details of economic evaluations in this
paper, but refer the interested reader to Antony et al., 2002 and Jones et al. (2000) as
examples. For traditional climate forecast assessment methods we refer the inter-
ested reader to Murphy (1993), Barnston (1992), and Mason and Graham (1999).
Sections 3–5 also consider alternative assessment methods of relevance to the parti-
cular application.

2.5. Implementation and delivery systems

There is a need to investigate appropriate delivery mechanisms of climate forecasts
so that industry can access information and implement tactical planning based on
this information. Climate forecast delivery systems vary with end user groups, deci-
sions, and geographical regions. The authors advocate that forming working part-
nerships with the end user would greatly facilitate the development and
implementation of suitable delivery. Whilst we propose that climate forecast delivery
systems are important for providing the necessary forecast information to the end
user, we consider that it is beyond the scope of this paper to discuss these in detail.

3. Irrigation case study

For many sugar-growing regions, the availability of irrigation water is not suffi-
cient to meet crop demand. An important issue for farmers to address is how to best
use a limited water supply and maximise the effectiveness of rainfall. Russell (1990)
and Wegener (1990) have found that irrigating at strategically calculated times can
increase sugarcane yields by up to 10 Mg ha�1 for locations in selected sugarcane
growing regions in Australia. Inman-Bamber et al. (1999) reported a cane yield
response of 41 Mg ha�1 to well timed irrigation amounting to only 179 mm. Thus,
the value of integrating seasonal climate forecasting with irrigation scheduling is
under investigation.
Cruz (1997) described ways in which irrigation practices in Gauca, Colombia,

could be modified before a likely occurrence of an El Niño event. Modifications
include regular monitoring of soil water balance, alternate surge irrigation, using
rigid irrigation tubes, sprinkler irrigation and daily control of irrigation water qual-
ity. Inman-Bamber et al. (2001) describe how the timing of irrigations and asso-
ciated stress indices differ between El Niño and non-El Niño years. The key result
identified in this paper was that in El Niño years there was a tendency to apply
irrigations earlier than in non-El Niño years at stress levels ranging between 0.5 and
0.7.

3.1. Methods

In this case study we demonstrate how the 5-phase SOI climate forecast system can
be used to improve irrigation management for sugar growing regions in Bundaberg
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(24.50�S, 152.21�E), Queensland, Australia. In order to provide an integrating
mechanism to link climate forecasting to irrigation scheduling, the APSIM-Sugar-
cane crop growth simulation model (Keating et al., 1999) has been utilised to pro-
vide crop yield simulation output that is then used to provide optimal timing
scheduling for irrigation application. This approach is being tested in replicated field
experiments in Bundaberg. Robertson et al. (1997) calculated 751 mm as the full
irrigation requirement for this region, but allocations are often as low as 100 mm
and seldom more than 400 mm. These allocations allow growers to irrigate two to
eight times during the season. Field trials have been established to determine if these
irrigations can be timed to coincide with periods of most severe water stress during
the season and whether or not irrigation applied during these periods is better than a
grower’s skill in using limited water. Here skill is measured by comparing the size of
the crop in Mg ha�1 produced by the grower with the size of the crop produced in
the field trial. It is assumed that soil and climate conditions on the farmer’s fields are
the same as that for the field experiment. The progress of crops in the experiment
were simulated each week and probable dates for the next irrigation were simulated
by appending daily climate records of radiation, temperature and rainfall, for the
past 110 years to the end of the climate record current at the time of simulation (11
January 2001). The most successful of a number of timing strategies was selected for
each year. Analogue years were grouped by SOI phases and the median date of the
appropriate SOI group was selected for the next irrigation.

3.2. Results

Fig. 2 demonstrates how the timing of the next irrigation (some time after the 11
January) varies with SOI phase. The most notable feature in Fig. 2 is that the med-
ian timing date for ‘consistently positive’ November/December SOI phases Julian
day 54 (23 February) is later than the median timing date for the remaining phases.
The November/December SOI phase for 2000 was positive so this simulation would
suggest delaying the next irrigation. This result is likely to be due to the increased
chance of experiencing above median rainfall for January when the SOI phase for
November/December is ‘consistently positive’.

3.3. Key lessons

Results to date show no benefit from the irrigation forecasting technique. This is
not surprising because there was only one moderate stress period during the 6-
month experiment, which both the cooperating grower and the forecasting method
identified correctly. Growers participating in this research agree that forecasts of
optimum timing for limited irrigation may not benefit the better growers but will
assist many who do not use their allocations at the right time for fear of running out
of water too early. Consequently, optimised water use patterns have been discussed
at many grower meetings to show when limited irrigation is likely to be most useful
as the season progresses. Delivery systems for conveying optimum irrigation times
to cane farmers from Bundaberg are currently being tested.
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4. Harvest management case study

Climate variability greatly affects harvesting and transport operations in the sugar
industry value-chain. Sugarcane is harvested over a long period (e.g. 5–9 months)
and rainfall events during this period disrupt the capability of moving cane from
field to factory. Management allows for average disruption to the harvest season,
but extreme rainfall events during the harvest can cause complications and impact
significantly across the whole value chain.
Muchow and Wood (1996) used historical rainfall records from selected sugarcane

growing regions in Australia to compute a measure of rainfall risk for varying times
during the harvest season. They concluded that the risk of disruptive rainfall
occurring at the end of the harvest season is greater than the risk associated with
disruptive rainfall at the beginning of the season. Everingham et al. (2001b) pre-
viously investigated the potential usefulness of 5-phase SOI system to forecast rain
events at the beginning (May–June) and end (October–November) of the Australian
harvest season, thereby determining those years when harvest disruption due to rain
would be more likely. These key periods were identified by industry to be important
since knowledge of high rainfall during these months could influence decisions
relating to the start and finish times of the harvest schedule and the order in which
paddocks could be harvested. For example, a decision to delay the start of the sea-
son requires knowledge of a high chance of a high number of wet days in May–June,
with a lead-time of approximately 1–2 months. If a forecast system suggests a high
probability of excessively wet conditions during October–November, then farmers

Fig. 2. Illustration of how the timing of the next irrigation varies with SOI phase. The horizontal axis

shows the Julian day of year of the next irrigation and the vertical axis shows the proportion of the

number of simulations that were applied on or before the corresponding Julian day. The horizontal line

can be used to read the median Julian day of the next irrigation.
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may prefer to harvest younger or better ratoons in the crop cycle earlier in the har-
vest season. Given that the potential for higher yields in the next season is greater
for the younger ratoons, this harvest management strategy would reduce the risk of
damage from wet weather harvesting and serious impact on the sugar yield for the
next season. In addition, in years when there is a high risk of disruption due to rain
events in October–November, harvest operators could ensure low lying areas are
targeted as early as possible within the harvest season to reduce the risk of leaving
cane unharvested. Results indicated that the usefulness of the climate forecast
depended on lead-time, and location, with greater skill identified for the October–
November period.

4.1. Methods

This case study presents some of the key findings in Everingham et al. (2001b) for
Kalamia Mill (19.54�S, 147.41�E) in the Burdekin region of Queensland, Australia.
The 5-phase SOI system was used to estimate the chance of having a high number of
wet days over May–June and October–November at seven lead-times ranging from
0 to 6 months. Industry defined a ‘high’ number of wet days, to refer to a number
greater than the upper quartile. Wet days are defined using a rule from the RAINRISK
database (Muchow et al., 1996):

� If the daily total rainfall is greater than or equal to 10 mm but less than 20
mm, then that day is defined to be a wet day.

� If the daily total rainfall is greater than or equal to 20 mm but less than 40
mm, then that day and the next day, are defined to be wet days.

� If the daily total rainfall is greater than or equal to 40 mm, then that day and
the next two consecutive days, are defined to be wet days.

Given climate forecast information, probabilities that differ significantly from
25% are of particular interest, since with no knowledge of climate forecasting the
chance of experiencing a high number of wet days is 25%. Significance as calculated
by S-Plus 2000 was determined at the 0.10 level by using an exact binomial test.

4.2. Results

Historical October–November records indicate (see Table 2) that when the SOI
phase has been ‘consistently negative’ at the end of June, July, August or September
the probability of experiencing a high number of wet days is statistically different to
the climatological probability of 25%. This is also the case when the SOI phase has
been ‘consistently positive’ at the end of July or August. When the SOI phase is
‘consistently positive’ at lead-times of 1–2 months, results indicate that the chances
of experiencing a high number of wet days during October–November are somewhat
increased. Conversely, a reduced chance of such events is suggested when the SOI
phase is ‘consistently negative’ for the months preceding October–November.
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The SOI phase system is less able to reduce uncertainty for experiencing a high
number of wet days in May–June for the example of Kalamia shown in Table 2.
However, ‘rapidly rising’ and ‘consistently negative’ SOI phases suggest that the risk
of experiencing a high number of wet days during May–June is low and that oper-
ations could plan for a normal start to the harvest season with knowledge of those
SOI phase patterns.

4.3. Key lessons

Some lessons learnt from this investigation are that seasonal climate forecasting
can add value to decisions influenced by high rainfall events in October–November,
but there is less skill associated with forecasting wet days for May–June. Growers
participating in this research acknowledge that if these climate forecasts had been
used in planning operations for the 1998 season, an early warning of the excessive
rains experienced may have been heeded, since the SOI phase was ‘consistently
positive’ from July 1998 through to March 1999. This would have had beneficial
impacts from the farm through to the marketing sector of the Australian sugar
industry for the 1998 season and subsequent seasons to follow.
Climate forecasts for key periods during the harvest season are now published in

the Australian Canegrower, which is a magazine distributed to an industry audience
comprising more than 7000 people. More participatory research is required how-
ever, for industry decision makers not part of the case study to better understand the
strengths, limitations and concepts associated with climate forecast systems. The
scientific team also recognises that the needs of the wider industry participants may

Table 2

Probabilitya of obtaining a high number (i.e. greater than the 75th percentile) of wet days in May–June

and in October–November for each SOI phase at lead-times from 0 to 6 months at Kalamia

Lead

(months)

Lead (months) May–June SOI phase

for

October–November

neg pos fal ris nz neg pos fal ris nz

0 March/

April

0.19 0.12 0.17 0.22 0.06 August/

September

0.09 0.36 0.10 0.33 0.16

1 February/

March

0.14 0.13 0.11 0.13 0.16 July/

August

0.05 0.42 0.36 0.11 0.22

2 January/

February

0.13 0.13 0.15 0.05 0.20 June/

July

0.00 0.48 0.22 0.35 0.06

3 December/

January

0.05 0.11 0.08 0.19 0.19 May/

June

0.00 0.36 0.25 0.28 0.16

4 November/

December

0.10 0.13 0.23 0.00 0.21 April/

May

0.11 0.35 0.13 0.19 0.28

5 October/

November

0.13 0.18 0.07 0.06 0.16 March/

April

0.13 0.31 0.22 0.39 0.12

6 September/

October

0.13 0.21 0.00 0.08 0.13 February/

March

0.07 0.39 0.21 0.17 0.22

a Probabilities that are significantly different from 0.25 at the 0.10 level are in bold.
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differ slightly from the needs identified in regions where the participatory research
has predominantly focused.

5. Crop forecasting case study

Climate is a key driver that affects sugarcane productivity levels (Muchow et al.,
1997). Advanced knowledge of climate through seasonal climate forecasts could
then be used to enhance risk management decisions associated with crop size across
the whole of industry. At the farm level, growers could plan to fertilize less (more) if
they expect a season to have low (high) crop demand for nutrients. As noted in the
Section 2.1, crop size influences the start time of the harvest and milling season. At
the marketing sector, improved yield forecasts can enhance forward selling and
shipping strategies.
It is now well accepted that the ENSO phenomenon significantly affects global

weather patterns. Understanding how the ENSO phenomenon affects specific crops
such as sugarcane is less understood. This can be partly attributed to the many other
factors affecting crop size such as farm management practices and pests and disease,
as well as economic and environmental considerations.
Some progress has however been made on the relationship between ENSO and

sugarcane productivity. Pulwarty and Eischeid (2001) found that for Trinidad and
the South Caribbean, rainfall in April–July is inversely related to the size of the crop
in the following harvest season. Further to this, they noted that the El Niño or warm
ENSO events were associated with much higher than normal rainfall during this
period in the year following the ENSO event peak. Conversely, La Niña or cold
ENSO events are associated with lower than normal rainfall for the same period. As
an example, the El Niño event of 1997–1998 was associated with very low yields in
1999. Hansen et al. (1998) found similar results for Florida sugarcane yields. Florida
sugarcane yields tended to be higher in years that were preceded by La Niña condi-
tions. The authors noted that the reduced rainfall and higher temperatures often
associated with La Nina winters contributed to better growing conditions for the
crop.
Kuhnel (1994) investigated the relationship between ENSO and sugarcane pro-

ductivity levels for different regions in Australia. Kuhnel found that yields for
northern and southern sugarcane districts in Queensland tend to be inversely related
with the value of the SOI in the year before harvest, which usually commences
around June.
Everingham et al. (2001a) examined the relationship between yields and SOI

phases for Australian sugar yields. Everingham et al. made use of Monte Carlo
procedures to determine which of the five SOI phases were most useful for indicating
when Australian sugarcane yields are likely to be above (or below) the long-term
median for eight mill locations of relevance to the Australian sugar industry. Ever-
ingham et al. (2001a) found that the 5-phase SOI system offers the potential to
improve sugarcane estimates but success varies with geographical location and SOI
phase.

470 Y.L. Everingham et al. / Agricultural Systems 74 (2002) 459–477



Singels and Bezuidenhout (1999) have also used SOI phases to identify how yields
for the South African sugar industry vary between SOI phases. Their research tar-
geted the needs of the South African sugar industry, which is affected by limited
water supply. Singels and Bezuidenhout found yields tended to be reduced when the
SOI phase in November was consistently negative. Singels and Bezuidenhout sug-
gested that the reduced crop size is associated with reduced likelihood of rainfall in
February, which is an important period for cane growth.
Other yield forecasting methods used by the South African sugar industry include

that by Jury (1998). Jury provides a categorical sugar production forecast (industry
average yield expressed as a percentage anomaly) in November of the year preceding
the milling year. It is based on statistical relationships between industry sugar yield
and the following predictors—SOI, eastern Atlantic surface meridional wind,
northern Indian Ocean surface meridional wind, and Southern Ocean air pressure.
Another approach is to use simulation models such as Canegro and ACRU-

Thomson (Lumsden et al., 2000) and Canesim (Singels et al., 1999). Such simulation
models require site-specific daily climate data and other inputs such as soil proper-
ties and management factors. Climate variables include daily rainfall, temperature,
radiation, wind and humidity. The simulation approach could provide estimates
from field level up to the whole of industry through appropriate means of aggregation
of model inputs and/or outputs (Hansen and Jones, 2000).
The Canegro, ACRU-Thomson and Canesim models are used to forecast yield by

extending simulations into the future. This is achieved by combining recently
observed climate data to represent that part of the crop cycle that has been com-
pleted, with historic sequences to represent a likely future scenario. One or more
sequences could be used to forecast the future, thereby introducing an element of
uncertainty inherent to forecasts. Actual daily climate sequences are used rather
than long term mean values in order to capture the effect of erratic rainfall
distribution on crop growth.
The case study presented in this section will focus on the current yield forecasting

method used in the South African sugar industry. The forecast has been conducted
operationally since 2000. A report is distributed every second month from February
through to November to representatives of the 15 mills and approximately 50,000
growers as well as to the South African Sugar Association (SASA) management (see
Bezuidenhout and Singels, 2001). Millers use the information to augment field-based
estimates from growers to plan the milling schedule for the coming season. The mill
opening date for example is a crucial decision. SASA has also used long-lead fore-
casts to formulate the annual industry business plan and to support decisions
regarding the forward selling of sugar on the export market. Although yields are
forecasted at the industry, mill supply area and district level, this case study will
focus on the latter.

5.1. Methods

Ten analogue daily weather sequences for the future are selected based on seaso-
nal rainfall forecasts provided by the South African Weather Service (see Section
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2.3). The number of sequences selected from each tercile depends on the forecasted
probability that rainfall will fall within the given tercile. One sequence is selected for
every rounded 10% of probability. Once the number of sequences to be selected
from each tercile is determined, it is then necessary to choose the actual sequences.
Sequences are selected which include the percentile of the rainfall total for the rele-
vant period that corresponds to the closest cumulative frequency at the midpoint of
each tercile (17, 50 and 83%) are selected. The total number of simulations is limited
to ten owing to restrictions in computing resources. The Canesim model then com-
bines the observed climate with the 10 analogue climate sequences to calculate final
yield. The mean and standard deviation of these 10 yield values are reported. Esti-
mates are expressed as percentages of the corresponding yield of the previous season.
The method will be demonstrated for 14-month-old crops harvested in August

2000 and August 2001 in the Tongaat district (29.34�S,31.08�E) in the North Coast
region of KwaZulu Natal, South Africa. Fig. 3 illustrates the method of selection of
analogue sequences for the Tongaat station based on the January 2001 rainfall
forecast. The forecasted probability of February to April rainfall to fall within the
above-normal, normal, and below-normal terciles were 20, 40 and 40%, respec-
tively. The analogue sequences selected would be from the years 1985 and 1984
(from the above normal tercile), 1986, 1982, 1987 and 1972 (near normal tercile) and
1980, 1994, 1983 and 1968 (below normal tercile). Table 3 summarizes the informa-
tion used for each forecast. The August 2000 and August 2001 crops were forecasted
in the preceding months of September, November, January, March, May and July.

5.2. Results

Fig. 4(a), (b) illustrates the forecast yield probability distribution generated at
each forecast date. The model estimated cane yield for the August 2000 crop to be

Fig. 3. An example of the selection of analogue climatic sequences based on rainfall forecasts. The graph

depicts cumulative frequency (CF) of February to April rainfall totals for the Tongaat station as well as

the years selected to represent likely future climate scenarios based on the forecasted probabilities (PO) of

rainfall occurring in three terciles.
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165% of the value obtained in 1999. Forecasts throughout the season indicated that
yields would be higher than the 1999 season. These indications strengthened as the
season progressed. The early under-estimation of yield can be partly attributed to
the relatively ‘normal’ forecast chance of rainfall occurring in the top tercile over the
summer months of the 1999/2000 season (see Table 3), given that rainfall actually
fell in the above normal tercile.
Cane yield for the August 2001 crop was well below that of 2000 due to prolonged

dry spells during the late summer and winter. These conditions generally correlated
well with the rainfall forecast for these periods. The inferior 2001 crop was already
forecasted in September 2000, 11 months in advance. In all cases except the May

Table 3

Climate information used for the yield forecasts of the August 2000 and August 2001 cropsa

August 2000 crop

Forecast date September

1999

November

1999

January

2000

March

2000

May

2000

July

2000

Climate forecast

period

OND DJF FMA AMJ JJA ASO

Above normal 30% 30% 30% 20% 40% 20%

Near normal 50% 50% 50% 50% 50% 40%

Below normal 20% 20% 20% 30% 10% 40%

Analogue years

Above normal 83, 97, 85 91, 96, 85 84, 89, 69 97, 87 81, 87,

88, 83

78, 79

Near normal 88, 98, 87,

76, 79

81, 82, 97,

86, 89

86, 82, 87,

98, 96

82, 99, 98,

86, 89

86, 95,

94, 78, 91

94, 97,

82, 93

Below normal 94, 84 83, 93 94, 83 77, 80, 83 92 89, 96,

92, 98

August 2001 crop

Forecast date September

2000

November

2000

January

2001

March

2001

May

2001

July

2001

Climate forecast

period

OND DJF FMA AMJ JJA ASO

Above normal 20% 20% 20% 30% 30% 20%

Near normal 40% 40% 40% 50% 50% 40%

Below normal 40% 40% 40% 20% 20% 40%

Analogue years

Above normal 83, 97 91, 71 85, 84 97, 69, 87 81, 87, 88 78, 79

Near normal 88, 98,

67, 71

81, 82,

97, 68

86, 82,

87, 72

98, 82,

75, 99, 74

77, 86,

70, 95, 94,

94, 70,

82, 77

Below normal 80, 94,

84, 91

80, 83,

93, 79

80, 94,

83, 68

68, 80 69, 74 96, 92,

98, 89

a Forecasted probabilities of 3-monthly rainfall totals falling into a given tercile and the analogue years

that were selected on that basis to complete simulations of two crops, are shown for each forecast date.
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forecast, the final simulated yield fell within the 50% spread of the forecasted yield
distribution [Fig. 4(b)].
This case study was conducted during a poorly-predicted wet season (2000) and a

well-predicted dry season (2001). The study illustrates the potential advantages in
linking a simple crop model with climate forecasts by using the analogue substitute
approach.

Fig. 4. Box plots of yield distributions forecasted at different dates for the August 2000 (a) and August

2001 (b) crop. The mean plus or minus two standard deviations are reported to the industry (shown at

bottom of graph).
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5.3. Key lessons

Four key lessons can be concluded from this study. First, the accuracy of climate
forecasts plays a very important role in the accuracy of crop forecasts, especially at
long lead-times. Inaccurate climate forecasts cause early forecast yield distributions
to deviate substantially from the final yield. Second, the limited number of analogue
seasons (10) used here could lead to volatile (changing substantially with successive
forecasts as the season progresses) forecast yield distributions. Increased computing
power could easily address this weakness. Third, another weakness is the long length
of analogue weather sequences selected on the basis of SAWS forecasts for the next
3-month period. The remaining (future) part of the growing season for which an
analogue sequence is needed could be as long as 15 months. Skilful climate forecasts
with lead-times longer than 3 months could be useful in addressing this issue.
Fourth, a key strength of this method is that forecasted climate sequences are
replaced regularly with actual climate data as it becomes available. This leads to
updated and realistic forecasts as the season progresses.

6. Conclusions

The most important lesson from our experience to date is that we have to go
beyond the ‘science’ of climatology and link this with participative implementation
processes to realise the benefits of emerging knowledge to industry. Initially industry
acknowledged that climate forecasts would be useful, but the challenge was to
understand how industry would actually use a climate forecast to enhance decision-
making processes. After successive meetings, scientists better understood industry
needs, and industry better understood concepts associated with climate forecasts,
and, as a result, key decision points and the necessary climate forecast outputs were
defined. Hence the key lesson was that the ‘action learning’ participatory research
process greatly facilitated the integration of climate forecast systems into a decision
framework.
The sugarcane industry is particularly challenging given the interdependencies of

the different sectors of the value chain and the diversity of decision-makers. That
said, the embryonic research to date, has highlighted significant potential benefits
for sugar industries worldwide. The challenge remains, for these benefits to continue
to be realised in practice and in some cases, for these benefits to be realised by the
extended industry audiences, within and across different sugarcane growing countries.
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