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Abstract

For countries with recurrent droughts, the design of drought impact mitigation measures could benefit from analyses of determinants of yields and
prices of local crops at regional and district level. This study applies dynamic spatial panel data regression models to yields and prices of four major
food crops across regions of Burkina Faso and Niger, over sample periods between 1984 and 2006. Results lend support to mainly simultaneous
spatial spillovers, particularly for millet and cowpea prices and sorghum yields in Niger, and maize yields in Burkina Faso. After accounting for
these effects, most crop yields are found to be weakly price-responsive, as envisaged by a supply-side geographical diffusion hypothesis. Seasonal
rainfall elasticity estimates suggest that dominant food crops have slight advantage margins in terms of relative resilience to rainfall shortages.
However, this result is to be weighed against low millet yields in Niger, and marked drops in sorghum yields during officially declared droughts in
Burkina Faso.
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1. Introduction

Agricultural soil in Africa, particularly in semiarid areas,
suffers from low water infiltration and retention capacity. Fer-
tilizer use is estimated to be at least 12 times lower than the
global average, also substantially lagging behind other devel-
oping regions. This partly reflects backlogs in rural infrastruc-
ture development, with expansion of cultivated areas towards
marginal lands where farming practices are unable to replace
the annual loss in nitrogen, potassium, and phosphate (Agwe
et al., 2007; Grimm and Gunther, 2004; UN-ECA, 2007, p. 9).
After unusually high rainfalls in the 1950s and except for some
recovery in the late 1990s and early 2000s, Sahel countries in
particular have severely been affected by successive droughts
over the last half century (Brown and Crawford, 2008), with
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declining soil fertility and land area per household attributed
to a combination of market failures, limited access to services,
inadequate planting management and shortened fallow cycles,
high demographic pressures, and rainfall variability (with dis-
cordant views as to which of these factors are more relevant).
Among Sahel countries, Burkina Faso and Niger are expected
to experience some of the largest increases in number of resi-
dents living in water-tension areas by 2050, thus becoming even
more exposed to drought risk (Le Blanc and Perez, 2007). More
than 80% of these countries’ labor force is employed in agri-
culture and most farmers rely on rain-fed crops and livestock
as main sources of food and income, with very low fertilizer
use intensity (less than 2 kg/ha in 2002) also compared with
other countries in Africa (e.g., 35 kg/ha in Cote d’Ivoire and
65 kg/ha in South Africa; Camara and Heinemann, 2006).

To help cope with these problems, the suitability of specific
agricultural crops and grain varieties in drought-prone coun-
tries is drawing increasing interest, with various reasons being
put forward in support of cassava, sorghum and maize, among
others (Appendix I). Most studies on the subject tend to focus
on climatic, institutional, and technological features at a cross-
country (Thiele, 2004) or cross-village (/household) level (Aker,
2008a). An intermediate regional level appears to be relatively
less investigated. Yet, this represents a relevant dimension for

c© 2010 International Association of Agricultural Economists DOI: 10.1111/j.1574-0862.2010.00465.x



2 S. Mainardi / Agricultural Economics xx (2010) 1–17

understanding drought vulnerability and food insecurity across
space and over time, with spatial econometric models helping
gain insights into, for example, determinants of crop yields
and prices in the regions concerned. In this analysis, regres-
sion specifications are formulated and applied to cross-region
annual yields and prices of four major food crops (sorghum,
millet, maize, and black-eyed pea) in Niger and Burkina Faso,
for periods between 1984 and 2006. The article is organized
as follows. Drawing on literature contributions on crop produc-
tion, yields, and prices (with focus on arid zones, especially the
Sahel), the next section reviews some major variables and hy-
potheses of concern (including the rationale for spatially lagged
variables). Two estimation approaches for spatial panel data re-
gression are presented in Section 3, with reference to their use
for modeling crop yields and prices. This is followed by an
overview of data and descriptive statistics in Section 4, and
a discussion of spatial regression estimates in Section 5. Rel-
ative to a few years with available information, the analysis
is supplemented with graphical exploratory data analysis on
socioeconomic and infrastructure indicators. The last section
draws concluding remarks.

2. Hypothesis testing

Using the same symbols of spatial regression variables (list
in Tables 2 and 3) and supplementary data analysis in Section 5
(road infrastructure development, hcpov headcount poverty in-
dex, and inst crop price instability index), general functional
forms for models geared to test determinants of crop yields (yd)
and prices (p) in drought-prone regions of the Sahel, can be
expressed by Eqs. (1) and (2), respectively (expected parameter
signs under the variables)
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In the equations, t is a linear trend (accounting for technol-
ogy changes, mechanization, and similar effects; Aker, 2008a;
Pandey et al., 2007, p. 33), sp represents a spatial lag, and oc
refers to a competing crop (e.g., previous year price of sorghum
versus millet yields, as in Abdullahi et al., 2006). Besides com-
monly used variables, the equations encompass two partly con-
tending hypotheses (A and B respectively, relative to variables
in brackets). In the remaining part of this section, variables of
common use and related effects are discussed first (climatic
indicators, crop diversification, exchange rate, and geograph-
ical spillover effects), followed by a comparison of the two
hypotheses.

Since soil moisture data are not readily available, rainfall is
often chosen as an explanatory variable in quadratic polynomial
form (so as to capture declining marginal returns; Fafchamps
et al., 1998; Thiele, 2004), eventually supplemented with
temperature data (Kurukusalasuriya and Mendesohn, 2007).
To avoid the unrealistic assumption of time- and space-wise
stochastic independence of rainfall (unless dynamic spatial re-
gressions are used) and problems of noisy climate data, rainfall
can be replaced by a dummy for drought years (/months) (Ding
et al., 2006). Moreover, lower but well distributed rainfall, es-
pecially in the absence of irrigation facilities, may result in
higher crop yields than poorly distributed rainfall with heavy
floods, which often cause disruptions to storage facilities and
hinder access to food from neighboring regions (Boken, 2005).
To account for these patterns, intrayear climatic indicators can
be used to distinguish between planting or early growing ver-
sus late growing season (Odekunle et al., 2007). Additionally,
El Niño and Southern Oscillation (ENSO) events tend to exert
a worldwide influence on weather patterns including precip-
itation patterns in Africa, and as such they can be included
in regressions along with other possible indicators of weather
anomaly (Naranjo Dı́az, 2005).

Similarly to the dispersion of land plots and simultaneous
multi-crop cultivations as a buffer factor for individual produc-
ers against droughts (Nweke, 2005, p. 14), a relatively higher
dispersion of croplands within and across regions/provinces
(eventually coupled with intercrop rotation) may help reduce
exposure to crop failures, yield risk, and vulnerability to pests.
This implies a negative expected parameter sign associated with
an index of crop concentration in regressions modelling crop
yields (e.g., the Herfindahl index h in Eq. (1), given by the
sum of squared production shares for major crops). Relative
to the impact of exchange rate policies, in CFA (Communauté
Financière Africaine) countries (including Burkina Faso and
Niger) the 50% devaluation of the CFA franc (relative to the
French franc) of January 1994 is believed to have prevented
productivity increases in food and feed crops, by increasing
the domestic price of imported goods and providing greater
incentives to cash crop production as groundnuts, cowpea, and
cotton, with insufficient spillover effects on subsistence agricul-
ture (Grimm and Gunther, 2004; Wyatt et al., 1999). Its impact
is likely to have been particularly severe in remote areas, due
to high transaction and transport costs.

Unmeasured or insufficiently measured agroclimatic (tem-
perature, sunlight, soil types, etc.) and institutional factors can
induce positive (e.g., diffusion of improved crop varieties) or
negative productivity spillovers across regions (Druska and
Horrace, 2004; Wood et al., 2004). Hazards and other occur-
rences affecting farmers’ cropping decisions in some regions
may influence decisions in nearby ones, in terms of both direct
(amount of farmland allocated to a crop) and indirect (e.g., wa-
ter resources for irrigation) effects (the respective theoretical
frameworks are referred to as spillover model and resource
flow model, which lead to the same spatial lag economet-
ric specification; Anselin, 2002). Similarly, closeness to main
urban centers is likely to allow some rural communities to
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benefit from lower transport and input marketing costs and
measures in support to food crops (such as inputs in kind and
cash loans to farmers’ cooperatives against stored grain col-
lateral). In the absence of detailed georeferenced information
(on market transaction costs, road infrastructures (road), and
extent of poverty (hcpov) across regions), better commercial
and transport networks among some regions, and conversely
weaker networks and inadequate storage and processing facil-
ities in others, may also be reflected by a high positive spatial
lag autoregressive parameter (associated with yd(sp) in Eq. (1)).
Besides genuine spatial diffusion, spatial dependence may be
spuriously compounded by geographical aggregation problems
(e.g., weather data are collected at point locations, which do not
adequately reflect climatic conditions and related systemic risk
by region). For both reasons, in cross-region panel regressions,
parameter estimates will be biased and inconsistent if relevant
spatially lagged endogenous or exogenous variables are omit-
ted, and inefficient if spatially correlated errors are ignored.1

Regarding the above alternative hypotheses, ceteris paribus,
low and unstable prices of some food crops (p and inst in Eq. (1))
hamper investment decisions in farming technology, including
fertilizers (which may burn the seeds if subsequent adequate
rainfall fails to occur, thus damaging the crops). Food crops
with more favorable price trends, especially in the presence of
lesser climatic risk, face lower market uncertainty, thus allow-
ing the adoption of additional inputs. In this first view (labelled
with A in (1) and (2) above), drought vulnerability is mainly
caused by market failures and structural constraints at local
level (with price movements explained by location-specific and
policy variables). The impact of shortage and intrayear vari-
ability in rainfall and insect plagues on crop supply and yields
largely depends on price movements (including exchange rate
effects) and adaptive capacity (that is the extent to which local
communities can mitigate the effects of these hazards; Dore and
Etkin, 2002, p. 16), with causal effects in the direction “staple
food price trends/volatility, rainfall and insect infestations →
yields → droughts.” Regarding crop prices, absence of rele-
vant spillover effects across regions is reflected by high market
price disparities in staple foods, wide mark-up margins between
producer and consumer prices, and limited commercialization
of cereal products (e.g., only 15% in Burkina Faso in the late
1990s; Grimm and Gunther, 2004).

In a second view (labelled with B in (1) and (2)), cross-region
market integration is found to strengthen during drought emer-
gencies and low-production years in Niger (e.g., grain price dis-
persion decreased during the 1997–1998 and 2004–2005 food

1 A regression specification with a spatial lag endogenous variable is also
justified as a correction device for spurious spatial autocorrelation induced by
geographical scale errors (Chasco Yrigoyen, 2003, p. 89). In this analysis,
the inclusion of spatially lagged exogenous variables is hindered by numerous
missing data for rainfall and food crop prices, and is left for future extensions.
Even if spatial lag exogenous variables are not explicitly included, spatially
lagged endogenous variables have implications in terms of spatial global multi-
pliers associated with modeled (through exogenous variables) and nonmodeled
(residual) spillovers (Appendix II).

crises; see Aker, 2008a; World Bank, 2008). In the absence of
excessive hoarding and effective storage capacity, this pattern
may be induced by increased cross-market transactions among
traders, farmers, and consumers during drought years. Markets
in grain-deficit regions tend to follow the price trends in surplus
production regions after accounting for transport costs, and the
market in both region groups is influenced by grain imports
from neighboring countries (Aker, 2008b). Therefore, along
with climate factors, agricultural prices can help detect food
supply shocks spreading from production centers to other ar-
eas. This supply-side geographical diffusion hypothesis implies
relatively more severe consequences in terms of food security
than droughts that affect specific regions. Given price-inelastic
agricultural supply, a dummy for years preceding droughts can
be used for modeling unobserved effects prior to extreme cli-
matic events (dprior in Eq. (1)) and their impact on yields.
The structural relationship between agricultural crop prices and
yields is modified accordingly, with a partial reversal in main
causal links, and spatial lag effects being more relevant for crop
prices than yields: “rainfall/drought and insect infestations →
yields → staple food price trends/volatility → food crisis.”

3. Econometric modeling

Econometric panel data models on crop yields and prices
require an appropriate choice of regression specifications and
estimation methods. Once average cropland size is accounted
for, yields may face thresholds, beyond which droughts are less
likely to be felt in an acute way. This pattern may be detected
within a region for specific crops vis-à-vis others, or turn out to
be region-specific and largely independent of crops (the latter is
likely to reflect a higher dependence of drought-prone areas on
insufficient and erratic rainfalls influencing crop yields, while
less vulnerable, food staple-surplus regions may benefit from
higher levels of soil moisture; Degefe et al., 2001, p. 74). In ei-
ther case, unobserved heterogeneity across regions can be mod-
eled by fixed-effects ordinary least squares (FE-OLS), which
maintains (near-)consistency and efficiency if unobserved ef-
fects are correlated with one or more exogenous variables. In
a dynamic model with no strict exogeneity, FE-OLS is sub-
ject to finite-sample bias (with the autoregressive coefficient
biased downwards for small T panels; Beenstock and Felsen-
stein, 2006; Greene, 2003, pp. 287–308). In spatial regressions,
the estimator properties are even less likely to hold, with more
severe problems of endogeneity and heteroscedasticity (Pinkse
and Slade, 2010).

More realistically, a weak exogeneity assumption allows
for feedbacks from lagged-dependent variables/lagged errors
to current and future values of an explanatory variable, which
makes the generalized method of moments (GMM) more suited
as an estimator.2 In this respect, modeling rain-fed agricultural
yields, cropland distribution, crop prices, and droughts is bound

2 A variable xit is defined as strictly exogenous if it is uncorrelated with
past, present, and future cross-panel residuals εit. Weak exogeneity implies that
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to face problems of simultaneity and lack of strict exogeneity,
particularly in the presence of time aggregation. As a creeping,
variously defined phenomenon with a relatively slow onset and
end (with more than 150 definitions of drought in the literature;
Boken, 2005), the impact of droughts is not easily identifiable.
Substantial yield decreases are occasionally registered ahead of
recorded climatic phenomena related to droughts, and droughts
officially declared by aid agencies and public authorities partly
arise as a consequence of interactions between intense and pro-
longed climatic disruptions and local adaptive capacity (Benson
and Clay, 2004; Mainardi, 2005). Land use patterns can rein-
force or mitigate vulnerability to hydro-meteorological shocks.
Relative to both unobserved heterogeneity and simultaneity in
yield regressions, retail prices of a cereal product can be in-
fluenced by distinct grain varieties and quality gaps between
markets, thus entailing that some determinants of price patterns
across regions and over time remain “hidden” at this level of
geographical aggregation. Similarly, with cereals and noncereal
products often competing for the same land, substitution possi-
bilities among rain-fed cereals, and between the latter and other
crops (such as cotton in Burkina Faso), imply some degree of
endogeneity in cropland area. This variable will be partly influ-
enced by farmers’ decisions, based on past and expected price
movements and other characteristics of crops.

To deal with the above problems, in this study FE-OLS and, as
an alternative approach, orthogonal deviations-adjusted GMM
regressions have been estimated relative to each crop/country
case. Define a vector xit of variables that are all strictly exoge-
nous (FE-OLS), or a combination of (strictly and/or weakly) ex-
ogenous and near-endogenous (GMM). In the regression mod-
els (Section 5), these variables represent: (i) climatic factors
(lnrd, lnrainf), crop market concentration (lnh), cultivated area
per capita (lnar(i)pc), and real crop price (lnrp(i)), in yield equa-
tions; or (ii) cultivated area per capita and crop yields (lnyd(i)),
in price equations. Maintaining generality, generalized mixed
autoregressive-spatial regression specifications (encompassing
a number of nested models; Chasco Yrigoyen, 2003; see Ap-
pendix II) for panel data with N regions (i = 1, . . . , N), and t =
1, . . . , T, are given by Eqs. (3) and (4), relative to FE-OLS and
GMM (in orthogonal deviation form, �od; Arellano and Bover,
1995) respectively

yit = μi + ayi,t−1 + β1y(sp)it + β2y(sp)i,t−1 + γ1xit

+ γ2x(sp)it + εit , (3)

�odyit = α�odyi,t−1 + β1�
ody(sp)it + β2�

ody(sp)i,t−1

+ γ1�
odxit + γ2�

odx(sp)it + vit . (4)

E(xit , yi,t−1|εit ) = 0, but E(xit |yi,t−1, εi,t−1) �= 0, that is, xit is uncorrelated
with current and future shocks, but not with past disturbance terms and past
values of the dependent variable yit. If residuals in levels are uncorrelated and
conditional expectations are specified as above, errors in first differences will
be first-order autocorrelated, with orthogonality at higher lags (Arellano and
Honoré, 2001).

Unlike the strict exogeneity assumption in FE-OLS, in GMM
models of crop yields, retail prices, market concentration, and
cropland per capita are allowed to interact with the dependent
variable and as such can be treated as near-endogenous, while
the one year-lagged spatial lag endogenous variable can be re-
garded as weakly exogenous, and climatic conditions as strictly
exogenous (spatial lag exogenous variables are not included
due to data constraints; see note 1). Conversely in price regres-
sions, an assumption of near-endogeneity applies to yields and
cropland. Hence, lagged values of y(sp) (for yields or prices ac-
cordingly) can be used as forward-filtered (orthogonally trans-
formed) instruments, along with the predetermined endogenous
variable at different lags as level instruments (yi,t−q , with q = 2,
. . . , 7).3 For yield equations, rainfall and rainy days/maximum
temperatures (Tables 1 and 2: lnrainf1, lnrainf2, lnrd, lntemp)
have also been chosen as orthogonally transformed instruments.
First difference and orthogonal deviation transformations re-
move the individual effects μi, thus avoiding possible correla-
tion problems with the instrumental variables. Compared with
first differences, transformations based on forward orthogonal
deviations (whereby each observation is expressed in terms
of deviation—weighted to standardize the variance—from the
average of future observations in the sample) preserve lack
of correlation, or partly correct for its presence, among trans-
formed errors (if original residuals are not serially correlated),
while maintaining consistency and asymptotic efficiency of
GMM (Arellano and Honoré, 2001; Doornik and Hendry, 2001,
pp. 66–67).

4. Data, variables, and descriptive statistics

Geographical reference units are primary subnational ad-
ministrative areas (delimited by UN-SALB “level 1” bound-
aries), that is, seven regions in Niger and 30 provinces in
Burkina Faso (the latter have been partly rearranged more re-
cently in 45 units; henceforth, the term region is used for ei-
ther country). Information from FAO geo-coded files on crop
production and cultivated areas based on agricultural cen-
suses (carried out every five years) and agricultural surveys
(www.fao.org/landandwater/agll/agromaps) has been supple-
mented here with national statistical sources (www.insd.bf;
www.ins.ne) for a few years with missing observations. The data
sets thus constructed concern sorghum and millet in both coun-
tries, cowpea in Niger, and maize in Burkina Faso, and cover
the period 1990–2006 in Niger, and 1984–2004 in Burkina

3 To account for an approximate upper bound in drought periodicity and to
avoid a small-sample over-fitting bias, maximum lags of the lagged endoge-
nous variable (yield or price) in the GMM instrument matrix for equations in
orthogonal deviations (Section 5), are limited to the range (2, 7). Using T as an
upper limit would allow a different number of instruments for each time period,
thus ensuring efficiency, but at the expense of biased estimates in small samples
(Doornik and Hendry, 2001, p. 68). For millet yields in Niger, forward-filtered
instruments include one-year lagged real retail prices (see Table 4).
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Table 1
List of variables and descriptive statistics: Niger (1990–2006 cross-region panel)

Variable Definition Mean μ (drought μ (other Standard Skewness Kurtosis
years) years#) deviation

yd[sor] Sorghum yield (tonne/ha) 0.26 0.27 0.24 0.13 0.55 −0.25
lnyd[sor] (natural logarithms) −1.5 0.61 −1.09 2.23
yd[mil] Millet yield (tonne/ha) 0.39 0.4 0.37 0.11 −0.67 0.56
lnyd[mil] (natural logarithms) −1.01 0.39 −2.47 8.62
yd[nbe] Cowpea (niébé) yield (tonne/ha) 0.13 0.14′ 0.11 0.08 2.13 7.29
lnyd[nbe] (natural logarithms) −2.27 0.68 −0.6 0.46
yd[nut] Groundnut yield (tonne/ha) 0.43 0.42 0.44 0.21 1.87 6.54
lnrp[sor] Real price of sorghum (1996 retail prices,

FCFA/kg)
4.73 (117.3) 137.8∗ 99.4 0.27 −0.37 −0.26

lnrp[mil] Real price of millet (1996 retail prices,
FCFA/kg)

4.82 (130.4) 142.5∗ 119.7 0.31 0.25 0.44

lnrp[nbe] Real price of cowpea (1996 retail prices,
FCFA/kg)

5.24 (194.3) 204.2′ 185.5 0.26 −0.51 0.13

lnar[sor]pc Sorghum-cultivated area per capita
(ha/resident)

−2.09 −2.05 −2.13 1.14 −0.45 −0.55

lnar[mil]pc Millet-cultivated area per capita (ha/resident) −0.67 −0.67 −0.67 0.31 −1.62 2.79
lnar[nbe]pc Cowpea-cultivated area per capita (ha/resident) −1.3 −1.3 −1.3 0.75 −1.37 1.19
lnh Production market concentration for major

crops (Herfindahl index h, range [1/n, 1]; n
= 3: sorghum, millet, cowpea)

−0.55 (0.6) 0.57 0.61 0.24 0.04 −0.98

lnrd Number of rainy days (by region, recorded at
local meteorological stations∧)

3.76 (46.2) 46.4 46.1 0.32 −0.48 0.47

lnrainf Rainfall (annual average by region, mm∧) 5.99 (477.7) 477.1 478.2 0.5 −0.51 0.01
lnrainf1 April–June rainfall (monthly average by

region, mm∧)
3.11 (28.8) 34.6′ 25.4 0.73 −0.34 0.43

lnrainf2 July–October rainfall (monthly average by
region, mm∧)

4.51 (96.4) 84.5∗ 101.7 0.35 −0.25 −0.52

lntemp Maximum temperature (degrees Celsius, by
region∧)

3.58 (35.96) 36.08∗ 35.85 0.02 −0.21 −0.51

Dummy variables
cfa CFA franc devaluation (1 for 1994–2006; 0 for pre-devaluation period 1990–1993)
dprior years prior to officially declared droughts (1 for year preceding droughts; 0 otherwise)
enso El Niño-Southern Oscillation events (1 years recorded with ENSO events; 0 otherwise)

Symbols preceded by ln: log-transformed variables (except for crop yields—original and log-transformed values in separate rows–mean values of original data are
reported in italics). #Including years of locust infestations. Sub-sample means (μ) are based on pooled regressions including intercept term and drought dummy
(statistically different at: ∗1%, ′5% significance level). ∧Data based on eight meteorological stations in the regions of Diffa (average estimates for N’Guigmi and
Maı̈né stations), Dosso, Maradi, Tahoua (average estimates for Birni N’Konni and Tahoua stations), Tillabéri and Zinder (nine stations for seasonal rainfall data,
including Niamey). Sources: see Section 4.

Faso (thus yielding nT-sized panels of 102—excluding Agadez-
and 630 observations, respectively). In Burkina Faso, the ge-
ographical distribution of villages covered by agricultural sur-
veys broadly reflects population proportions across provinces,
with fixed numbers of households chosen per village (e.g., for
standard surveys, 706 villages and 5,648 agricultural house-
holds). A similar sampling design is followed in Niger, with
surveys based on, for example, 7,400 sedentary agricultural
households in 499 population count zones, which are randomly
selected within each district while roughly complying with a
demographic weight criterion (except for the region of Agadez,
where rain-fed agriculture is too small to be estimated by sur-
vey; Madaı̈, 2008).

Additional data from the above national statistical sources
include: (a) rainfall/number of rainy days registered at meteo-
rological stations across different regions of the two countries
(Tables 1 and 2) and maximum temperatures recorded by these

stations in Niger (Table 1); (b) CPI-deflated retail crop prices
by region (annual averages relative to markets in (i) each re-
gional capital except Agadez in Niger, and (ii) nine main urban
communes in Burkina Faso (in provinces comprising 40% of
the national population in 2004: Table 3)); and (c) socioeco-
nomic and local infrastructure indicators for specific years. To
account for intraannual rain variability and since the dry season
in both countries lasts from November to March/April, aver-
age monthly rainfall recorded by each station between April
and June, and between July and October, has also been relied
on (GHCN-monthly version 2: ftp.ncd.noaa.gov; Tables 1 and
2: lnrainf1 and lnrainf2). Farm-gate prices (for which no panel
data by region/year are available) can be hypothesized to largely
follow patterns of retail prices (Tables 1 and 2: lnrp(i)), with
mark-ups being nearly fixed for relatively long periods.

As a supplementary source of information, EM-DAT
(www.emdat.be) has been relied on to construct a dummy of
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Table 2
List of variables and descriptive statistics: Burkina Faso (1984–2004 cross-region panel)

Variable Definition Mean μ (drought μ (other Standard Skewness Kurtosis
years) years#) deviation

yd[sor] Sorghum yield (tonne/ha) 0.83 0.72∗ 0.85 0.32 1.69 7.81
lnyd[sor] (natural logarithms) −0.24 0.37 −0.41 1.17
yd[mil] Millet yield (tonne/ha) 0.68 0.63′ 0.69 0.23 0.62 0.9
lnyd[mil] (natural logarithms) −0.44 0.36 −0.6 0.78
yd[mai] Maize yield (tonne/ha) 1.03 0.9′ 1.05 0.49 0.56 0.51
lnyd[mai] (natural logarithms) −0.11 0.6 −1.23 2.13
yd[nut] Groundnut yield (tonne/ha) 0.765 0.8 0.76 0.3 0.99 3.8
lnrp[sor] Real price of sorghum (1996 retail FCFA/kg,

1998–2002∗∗)
4.81 (126.2) 143′ 122.1 0.22 −0.61 0.64

lnrp[mil] Real price of millet (1996 retail FCFA/kg,
1998–2002∗∗)

4.9 (137.7) 160.9∗ 131.9 0.21 −0.74 −0.1

lnrp[mai] Real price of white maize (1996 retail
FCFA/kg, 1998–2002∗∗)

4.81 (125.3) 142.3′ 121.1 0.2 −0.61 −0.15

lnar[sor]pc Sorghum-cultivated area per capita (ha/1,000
resident)

4.89 4.7′′ 4.92 1.03 −2.12 6.75

lnar[mil]pc Millet-cultivated area per capita (ha/1,000
resident)

4.83 4.82 4.835 0.93 −1.29 2.86

lnar[mai]pc Maize-cultivated area per capita (ha/1,000
resident)

2.65 2.1∗ 2.72 1.44 −0.52 1.26

lnh Production market concentration for major
crops (Herfindahl index h, range [1/n, 1]; n
= 3: sorghum, millet, maize)

−0.71 (0.5) 0.54∗ 0.49 0.18 0.82 1.6

lnrd Number of rainy days by region (recorded at
local meteorological stations, 1996–2004∧)

4.22 (70.2) 67.7 70.6 0.25 −0.51 −0.57

lnrainf Rainfall (annual average by region, mm,
1996–2004∧)

6.64 (798.5) 791.1 799.8 0.31 −0.54 0.19

lnrainf1 April–June rainfall (monthly average by
region, mm∧)

4.05 (67.3) 41.5∗ 70.2 0.62 −0.8 0.6

lnrainf2 July–October rainfall (monthly average by
region, mm∧)

4.91 (142) 122.7∗ 145.3 0.32 −0.54 0.02

Dummy variables
cfa CFA franc devaluation (1 for 1994–2004; 0 for pre-devaluation period 1984–1993)
dprior years prior to officially declared droughts (1 for year preceding droughts; 0 otherwise)
enso El Niño-Southern Oscillation events (1 years recorded with ENSO events; 0 otherwise)
ota NASA index of global land-ocean temperature anomaly (UNEP GeoData, geodata.grid.unep.ch)
isohyets Agroecological classification based on broad isohyetal zones: 1. Sahelian, 2. Sudano-Sahelian, 3. Sudanian (annual average rainfall levels less

than 600 mm, around 800 mm, and exceeding 1,000 mm i.e., nearly 1,200 mm, respectively; Wang et al., 2008)

Symbols preceded by ln: log-transformed variables (except for crop yields–original and log-transformed values in separate rows–mean values of original data
are reported in italics). #Including years of locust infestations. Sub-sample means (μ) are based on pooled regressions including intercept term and drought
dummy (statistically different at: ∗1%, ′5%, ′ ′10% significance level). ∗∗Retail markets in the provinces of Boulgou, Boulkiemde, Gourma, Houet, Mouhoun, Poni,
Sanmatenga, Seno and Yatenga. ∧Data based on ten meteorological stations in the provinces of Gnagna, Gourma, Houet, Kadiogo, Mouhoun (average estimates for
Boromo and Dédougou stations), Nahouri, Poni, Seno, and Yatenga (eight stations and seven provinces for seasonal rainfall data, excluding Gnagna and Nahouri).
Sources: see Section 4.

pre-drought years (Tables 1 and 2: dprior, for individual re-
gions or countrywide), so as to test for unobserved effects in
a supply-side geographical diffusion hypothesis (Section 2). In
this database, natural hazards including droughts are classified
as a disaster if they match one or more of the following criteria:
a hazard event has left at least 10 people dead, hundred individ-
uals or more have been affected (being in need of immediate
emergency relief, relative to food, water, shelter, and medical
care, thus including injured and homeless), an official request
for international assistance has been made, and/or a state of
emergency has been declared.4

4 EM-DAT is maintained by CRED (Centre for Research on the Epidemiology
of Disasters, University of Louvain), in collaboration with WHO. Given the

In relation to a proxy for commodity price instability (as
nonsystematic variation in e.g., retail crop prices: Eqs. (1)
and (2) in Section 2), Kenen and Voivodas (1994) suggest to
use the standard error from mixed autoregressive-deterministic
trend OLS regressions (or their generalized differenced form).
Alternatively, instability can be proxied by absolute devia-
tions between observed and expected prices, as percent shares
of expected prices estimated with truncated distributed-lag

above criteria, the database does not include relatively “minor” events at a
local (e.g., municipal) level (Tschoegl et al., 2006). In landlocked countries in
the Sahel, localized food crises due to population movements or local market
shocks (not necessarily related to officially declared droughts) tend to occur
every year.
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maximum likelihood (ML) models, which reflect adaptive ex-
pectations (Glezakos, 1978). Based on an estimator that is less
sensitive than OLS and ML to deviations from normality and
atypical observations (DasGupta and Mishra, 2004), least ab-
solute deviations (LAD) residuals have been preferred here as
a yardstick, with price instability measured as mean percent
absolute deviations of rescaled LAD residuals (with estimate
for a region i given by

∑
(|εit | ∗ 100/p(e)it )/n; n = 15 years

[1992–2006]) from second-order distributed lag regressions on
(untransformed) real prices of food crops, including a dummy
for the 1994 CFA franc devaluation (results not shown).5 Due
to missing observations for other crops, the estimation of the
price instability index is limited to cowpea and millet prices in
Niger over the period 1990–2006 (Fig. 3: inbe, imil).

Summary statistics of the variables are presented in Tables
1 and 2, relative to the two country panels (among relevant
crops other than those examined in Section 5, the tables re-
port groundnut yields, while cassava and fonio have missing
data for most regions/years). Based on coefficients of variation
(=standard deviation/mean), yields appear to vary on average
more than real prices (except for millet in Niger), while mixed
results in terms of relative variability are evident for yields vis-
à-vis rainfall (characterised by high variability during the early
growing season, especially in Niger) and cultivated area per
capita. For Burkina Faso, these statistics are not strictly com-
parable across all variables due to partly unbalanced panels,
and this also largely applies to seasonal rainfall data in both
countries (due to missing observations). Rightward skewness
and platykurtosis (versus zero-centred mesokurtosis) in several
variables is corrected (in some cases over-corrected) with loga-
rithmic transformations (Tables 1 and 2). Unlike linear polyno-
mial functions (as for rainfall in Eq. (1), Section 2), double-log
regressions directly yield elasticity parameter estimates (with
less-than-unit elasticity implying decreasing marginal returns
for seasonal rainfall). Limited to Burkina Faso (given sample
constraints for Niger), constancy of rainfall elasticity has been
tested with log-quadratic specifications (as commented in the
next section).

While neither country shows remarkable disparities between
drought and nondrought years in terms of average annual rain-
fall and rainy days, seasonal rainfall, and maximum tempera-
tures register statistically significant differences (in Niger dur-
ing drought years, substantial rain shortages affect the July–
October rainy season, although relatively higher rainfall un-

5 An adaptive expectations model for price levels (with p(e)t the price ex-
pected at year t) can be expressed in Eq. (5). This can be reformulated through
successive substitutions as weighted averages of past observed prices, as in
Eq. (6):

p(e)t − p(e)t−1 = β[pt−1 − p(e)t−1] (0 < β < 1) (5)

p(e)t = βpt−1 + β(1 − β)pt−2 + β(1 − β)2pt−3 + · · · . (6)

Truncation (e.g., at second-order lag) in distributed lag (de facto autoregres-
sive, since the dependent variable is not observed) model estimation of (6)
reflects empirical evidence that expected prices are largely influenced by the
most recent prices (Glezakos, 1978).

expectedly concerns the pre-growing season; Table 1). While
yields in Burkina Faso appear to experience marked drops dur-
ing officially declared droughts, lack of evidence for Niger is
likely to reflect structural weaknesses. These are highlighted by
persistent low yields in major food crops, with no significant
differences in average yields between drought and nondrought
years (even if locust infestations are included among the for-
mer). Droughts register marked food price increases, with jumps
for sorghum in Niger exceeding one-third of the price in normal
years (Table 1). In Burkina Faso, these price jumps appear to
be accompanied by shrinking per capita area of sorghum and
maize cultivations and decreased market diversification (Table
2: lnh). Finally, the dominant crop (millet in Niger and sorghum
in Burkina) is also the one achieving relatively higher average
yields (Tables 1 and 2).

5. Spatial regression model estimates

With a nonprojected FAO spatial coordinate system, for this
analysis spatial weight matrices have been constructed based
on arc-distances between regional centroids (estimated with
the software GeoDa; Appendix II; Anselin, 2003). For Niger,
the cut-off distance was set at an average connectivity level
(466 km) between minimum and maximum feasible distances.
For Burkina Faso, the minimum level (57 km) was preferred,
due to the higher administrative disaggregation and smaller
country area. Also, spatial weights for Niger were adjusted for
directional effects, captured by each region’s population share
(in 2006, the number of residents was more than six times
higher in the province of Maradi than Diffa, with nearly four
hundred thousand individuals living in the latter province). To
simplify, isotropy is assumed instead for Burkina Faso. While
further analysis would be necessary to test the sensitivity of
results to different spatial weights, comparison of econometric
estimates between the two countries needs caution in view of
these differences.6

Dynamic first-order autoregressive-spatially autoregressive
(AR-SAR) panel data models, which encompass the hypotheses
reviewed in Section 2 (in line with Eq. (1) and specifications
(3) and (4); see also Appendix II), have been applied to the
selected crop yields. For Niger, ad hoc AR-SAR models are
estimated for crop prices (based on Eq. (2), and the same alter-
native approaches as for yields). Econometric results are pre-
sented in Tables 3 and 4, for yields and prices respectively (for
Burkina Faso, relative to subsample regressions with isohyet

6 In 2006, population by province in Burkina Faso ranged from nearly ninety
thousand inhabitants in Bougouriba (in the south-western Sudanian zone) to
more than one million three hundred thousand residents in the province of
Ouagadougou (Kadiogo). Estimates for years other than general population
censuses (www.insd.bf, Table 3.17) are projections based on average intra-
census annual compound growth rates. In the construction of spatial weight
matrices, a minimum distance is required to ensure that each observation has
at least one neighbor. Relative to Burkina Faso, this lower bound chosen as a
threshold distance highlights limited connectedness (i.e., one or two neighbors)
for four peripheral provinces (Oudalan, Poni, Seno, and Tapoa).



S. Mainardi / Agricultural Economics xx (2010) 1–17 9

Table 4
Spatial panel data model estimates for crop prices in Niger

Method FE-OLS FE-OLS GMM FE-OLS GMM FE-OLS GMM
[Model] sample size [1a] 87 [1b] 87 [2] 81 [3] 96 [4] 90 [5] 96 [6] 90
Agricultural crop Sorghum Millet Cowpea

Constant 3.58 3.07 0.02 0.34 −0.001 1.0 −0.001
(6.86)∗ (3.77)∗ (1.2) (1.32) (−0.14) (1.43) (−0.05)

lnrp(i)−1 0.13 0.39 0.11 0.15 0.15 0.32 0.36
(1.22) (2.41)′ (1.26) (1.4) (1.4) (3.12)∗ (3.42)∗

lnrp(i)sp 0.32 0.36 0.98 0.99 0.9 0.89
(4.66)∗ (5.47)∗ (28.2)∗ (28.8)∗ (11.8)∗ (10.7)∗

lnrp(i)sp−1 −0.2 −0.17 −0.18 −0.18 −0.39 −0.39
(−2.6)∗ (−2.4)′ (−1.58) (−1.56) (−3.17)∗ (−3.01)∗

lnrp(i)sp(dr) 0.05 0.06 0.004 0.004 0.003 0.003
(6.96)∗ (6.78)∗ (0.97) (0.9) (0.61) (0.42)

lnar(i)pc 0.01 0.09 −0.001 −0.01 −0.06 0.01 −0.02
(0.3) (1.24) (−0.01) (−0.17) (−0.92) (0.31) (−0.43)

lnyd(i)−1 0.02 −0.09 0.05 0.01 0.02 −0.02 −0.04
(0.55) (−1.58) (1.34) (0.5) (0.64) (−1.36) (−1.92)′′

lnyd(i)dr−1 0.0005 0.04 −0.002 −0.003
(0.02) (0.8) (−0.13) (−0.3)

cfa 0.03 0.09 0.02 −0.009
Dosso −0.01 0.03 −0.09′′ −0.26∗
Maradi −0.3′ −0.42′′ −0.31∗ −0.31∗
Tahoua −0.06 −0.16 −0.04 −0.17′
Tillaberi 0.02 −0.04 −0.03 −0.02
Zinder −0.31′ −0.44′′ −0.26∗ −0.37∗
m1 −0.23 1.95′′ −3.05∗ 0.4 −2.64∗ 0.34 −3.14∗
m2 −0.8 −4.44∗ −0.06 −1.06 −0.44 −0.96 −0.44
χ2(k) 219.8∗(8) 12.6′(5) 208.0∗(6) 1,227.0∗(8) 1,188.0∗(7) 323.3∗(8) 313.0∗(7)
χ2(d) 59.9∗(6) 17.8∗(6) 48.1∗(6) 30.1∗(6)
χ2(z − k) 64.6(70) 69.3(70) 70.5(70)
R2 (adj) 0.8 0.34 (0.71) 0.94 (0.92) 0.86 (0.77)

Notes for Table 3 and 4.
Dependent variable: lnyd(i) (Table 3), lnrp(i) (Table 4). Lists of variables: Tables 1 and 2; (i)sp spatial lag; (i)sp(dr) spatial lag slope dummy for drought years ((i)sp
for years of droughts, 0 otherwise]; (i)dr slope dummy for drought years). In parentheses: t-statistics under estimated parameters (level of significance: ∗1%, ′5%,
′′10%); adjusted R2 for GMM models (=1 − [var(ε)/var(Y)]). In parentheses (Table 3): estimated parameters for seasonal monthly rainfall in log-quadratic form.
In italics: estimated parameters and t-statistics in regression specifications including seasonal rainfall or real crop price slope dummy for drought years (and real
crop price for Burkina Faso). m1 (m2): first-order (second-order) residual autocorrelation test (Arellano and Bond, 1991, p. 282; Doornik and Hendry, 2001, p. 94).
χ2(k/d): Wald test of joint significance of k estimated parameters (including time dummies if applicable)/d dummies including constant (excluding time dummies).
“Outlying” fixed effects for Burkina Faso (other province FE parameters not shown): U1 extreme upper, U2, second upper, L2 second lower, L1 extreme lower
(sorghum: U1 Comoé, U2 Zoundweogo, L2 Oubritenga, L1 Oudalan; millet: U1 Kossi, U2 Gnagna, L2 Soum, L1 Oubritenga; maize: U1 Mouhoun, U2 Kenedougou,
L2 Soum, L1 Oubritenga). χ2(z − k): Sargan test of validity of instruments (over-identifying restrictions, with z number of instruments). Estimation method: FE-OLS
(fixed effects-ordinary least squares), GMM (generalized method of moments).

zones instead of provincial effects, partial results are reported
in italics).7 Based on goodness-of-fit measures, price variation
is found to be better explained than yield variability (as not
strictly suited to GMM, adjusted-R2 statistics are reported in
parentheses for GMM regressions). Relative to sorghum prices
in Niger, FE-OLS estimates of a regression without spatial ef-
fects (reported for comparative purposes; Table 4, [1b]), are

7 Administrative regions in Mali and Niger approximately correspond to dif-
ferent rainfall areas (defined by isohyets), with millet scattered across different
regions, and sorghum more concentrated in semi-arid, relatively more humid
zones in south-western regions. Similarly, different vegetative zones can be
distinguished in Burkina Faso, corresponding to distinct isohyetal zones, with
increasing average rainfall levels and water productivity when passing from
north-eastern to south-western provinces. Millet and sorghum are cultivated
on sandy highlands and drier areas, while maize is relatively more present in
low wetlands, occasionally along with rice (Brown and Crawford, 2008; Wang
et al., 2008).

biased and inefficient, with serial and spatial residual correla-
tion (also based on the Moran’s I statistic on panel residuals
[=0.85]). As for spatial regressions, FE-OLS yields uncorre-
lated errors in levels, and this mostly applies also to GMM
at second-order lags (as in Arellano and Honoré, 2001). The
null hypothesis of no correlation between GMM instruments
and estimated residuals cannot be rejected by the Sargan test,
thus indirectly validating the instruments. Possible enhanced
capacity effects over time, captured by linear trend terms, are
not present or seem to have had only a minor impact (mod-
els including trend parameter estimates are reported in Table
3 for Burkina Faso). The same applies for the presumed role
of the CFA franc devaluation, and for unobserved effects in
years preceding the beginning of officially declared droughts.
The only exception is represented by millet yields, which ce-
teris paribus experience negative effects in pre-drought years
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(especially in Niger), and (in Burkina Faso) some improvements
in the post-devaluation period (Table 3: [3] vs. [9]).

Except for millet in Niger, simultaneous spatial diffusion ef-
fects appear to be more relevant for explaining the performance
of major crop yields than the respective (time) autoregressive
and one-year lagged spatial effects, and similar results hold true
for crop prices. In seven models ([1]–[2] and [12] for yields,
and [3]–[6] for prices), the simultaneous spatial autoregressive
coefficient is close to the unit bound, with no rejection of the
unit null hypothesis at 5% statistical significance (for cowpea
prices, dynamic spatial effects are smoothed down by a negative
parameter of the one-year-lagged spatial lag variable: Table 4).
Relative to models [3] and [4] (Table 3), if one-year lagged spa-
tial lag yields are excluded from the regression, the parameter
of the lagged endogenous variable remains negative and statis-
tically significant, thus suggesting instability for millet yields in
Niger. On the whole, consistent with a supply-side geographi-
cal diffusion hypothesis, food crop yields are hardly responsive
to their unit prices (except to some extent for millet in Niger
and maize in Burkina Faso), and remain substantially so during
officially declared droughts (Table 3: real price slope dummy
lnrp(i)dr) and vis-à-vis unit prices of competing crops in terms
of cross-price elasticity (the latter results—not reported—also
concern price regressions, partly due to multicollinearity). On
the other hand, the contending argument of a stronger causality
effect in the opposite direction is not supported by crop price
regressions for Niger, with statistically insignificant parame-
ters of lagged yields (except in model [6], Table 4), and no
significant interaction effects with drought years (slope dummy
lnyd(i)dr−1). Relative to sorghum, a statistically significant pos-
itive parameter associated with an interaction term between
the spatial lag price and official droughts (Table 4, [1a]-[2]:
slope dummy lnrp(i)sp(dr)) is consistent with previous evi-
dence on reductions of grain price geographical dispersion dur-
ing drought events (Aker, 2008a).

Regarding climatic factors, sorghum and millet crop produc-
tivity in Burkina Faso appears to be negatively influenced by
temperature anomalies (Tables 2 and 3: ota), although slightly
less so during ENSO events. The respective crop yields in Niger
turn out to be unaffected by these anomalies (results not shown),
but relatively more sensitive to rainfall shortages during the
rainy season (Table 3, [1] vs. [7], and [3] vs. [9]: July–October
rainfall). Based on these elasticity parameters (as an approxi-
mate indicator of relative resilience to rainfall shortages), the
dominant crop in either country seems to have a slight advan-
tage margin relative to competing crops within each country.
However, relative to Burkina Faso, this is limited to the April–
June period for sorghum relative to millet, while in the rainy
season the two crops show similar rainfall elasticity (see also
Fig. 1).8 Concerning other crops, Niger’s cowpea has very low

8 Indirect estimates of elasticity are based on the first derivative of log-
quadratic specifications with respect to lnrainf2, given estimated parameters
and sample mean of this variable. The average elasticity thus estimated amounts
to lower values than those estimated directly, that is, 0.16 and 0.12 during the

yields (as occurring in other Sahel countries: Perret, 2006, p. 3)
and appears to be vulnerable to rain shortages across different
isohyetal zones (also in terms of annual rainy days; Table 3, [5]
and [6]).

The hypothesis of a negative impact of insufficient yield-risk
diversification through balanced inter-cropping cultivations is
substantiated in two cases (sorghum and cowpea in Niger), but
rejected or only partly supported in others. Relative to sorghum
in both countries and cowpea in Niger, statistically significant
negative parameters associated with the control variable for
cultivated areas per capita imply that, other conditions being
equal, regions/years with relatively larger extension of crop-
land per resident have fared comparatively worse in terms of
average yields of these crops. This result may reflect increased
soil conservation efforts and input intensity to compensate for
smaller planted areas, but it is also likely to be influenced by
spatial aggregation problems, as discussed in Section 2. Over
the sample period analysed for Niger (1996–2006), no consis-
tent cross-region patterns of yield vulnerability can be detected
based on region-specific fixed effects. Ceteris paribus, while
Diffa (implicit dummy for Niger), Dosso, and Maradi lag se-
riously behind other regions in terms of sorghum yields, other
regions score poorly compared with the south-central provinces
of Maradi and Zinder relative to millet yields, and the latter in
turn fall short of others relative to cowpea yields (Table 3: [1],
[3], [5]). As for Burkinabé provinces, a more distinct pattern,
largely associated with isohyets, is revealed by fitted regres-
sion residuals: some eastern, south-central and south-eastern
provinces (including Comoé, Kenedougou, Kossi, Mouhoun,
and Zoundweogo) stand out for relatively better productivity in
one or more of the three food crops, whereas opposite cases are
represented by Sahelian provinces, such as Oudalan and Soum
(but also Oubritenga in the Central Plateau; Table 3: [7], [9],
[11]).

If the dominant crop is focused on, both millet in Niger and
sorghum in Burkina Faso present marked year-to-year vari-
ation in cross-region yields (illustrated by quantile maps in
Figs. 2 and 4, relative to two years). High crop price instability
in Niger seems to be especially present in (and thus possibly
to negatively affect) regions with more limited scope for crop
yield improvements, such as the southern regions of Maradi
and Zinder for cowpea (a more heterogeneous pattern can be
observed for millet: Fig. 3). Unexpectedly relative to Eq. (1)
(Section 2), no clear patterns in terms of poverty headcount
indices (www.ins.ne, Statistiques structurelles; UNDP, 2007:
T.3.10), nor interactions between the latter and for example,
road infrastructure backlogs (Fig. 5), are observable so as to
further explain regional differences in crop yields. However, as
suggested by quantile maps of estimated incidence of poverty
in Niger (not shown) and levels of malnutrition in Burkina Faso
(Fig. 6), disparities in socioeconomic and nutritional indica-
tors vary from one year to the next also as a result of different

rainy season for sorghum and millet respectively (Table 3: parameter estimates
of the two log-polynomial terms reported in parentheses).
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(a) Sorghum yields (t/ha) vs. July-October monthly average rainfall (mm), in natural logarithms 
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(b) Millet yields (t/ha) versus July-October monthly average rainfall (mm), in natural logarithms 
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Fig. 1. Crop yields versus wet season monthly rainfall in Burkina Faso (1984–2004).

Fig. 2. Millet yields by region: Niger (2004–2005).

survey methodology, thus limiting the use of these indicators
in a cross-region panel. Moreover, relative to Burkina Faso, the
Moran’s index of local spatial association allows us to visual-
ize the presence of significant spatial clustering effects among

neighboring provinces within some parts of the country. These
effects are induced by factors that need to be analyzed at a
more disaggregate geographical level (e.g., local effects from
dominant crop—sorghum—on millet yields, and influence of
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Fig. 3. Crop price instability: cowpea and millet in Niger.

Fig. 4. Sorghum yields by region: Burkina Faso (2003–2004).

Fig. 5. Incidence of poverty and road infrastructure backlogs by region: Burkina Faso.
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Fig. 6. Incidence of malnutrition by region: Burkina Faso (2003–2005).

Fig. 7. Sorghum yields versus road infrastructure, and millet versus dominant crop (sorghum) yields: spatial spillover effects in Burkina Faso (LISA cluster maps).

the state of the road network and transport facilities on sorghum
yields, with cluster “core hotspots” highlighted in Fig. 7; for a
review of local spatial statistics, see Getis and Ord, 1996).

6. Conclusion

In drought-prone countries, studies of determinants of crop
yields and prices across regions can contribute to the analysis
of the impact and incidence of droughts, and strengthen the
design of strategies for reducing exposure to droughts and food
insecurity. Econometric modeling of spatial dependence in crop
yields and cropland distribution across regions has also become
a useful tool for harvest risk management (Druska and Horrace,
2004; Holloway et al., 2007; Zhu et al., 2009). The use of
spatial panel data estimation techniques is in its infancy, due
to computational requirements and less developed theoretical
underpinnings (relative to panel data and spatial econometrics

as two separate domains). However, spatial panel data models
can help avoid some of the identification problems typically
encountered in (spatial) cross-section econometrics, such as the
mixing of true and apparent contagion (Appendix II; Anselin,
2002). In this respect, a relevant question concerns the extent to
which weak adaptive capacity and vulnerability to droughts can
be explained by location-specific (regional/subregional) factors,
which are largely independent of crop and land use choices.
Among possible factors of improved response capacity in front
of emergencies, easy accessibility to main urban centers and
local availability of carryover stocks may dampen price shocks
and reduce supply disruptions during drought years.

Relative to four major food crops in Burkina Faso and Niger,
in this study yields and prices are found to undergo signif-
icant spatial diffusion processes, with feedbacks turning out
to be mainly simultaneous and generally more relevant than
autoregressive effects. Spatial spillovers, revealed by spatial
lag elasticity parameters, turn out to be particularly strong for
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millet and cowpea prices and sorghum yields in Niger, and
maize yields in Burkina Faso (where some provinces lie struc-
turally behind others in terms of yield levels for this and other
cereals). These results imply that shocks affecting food crops
have tended to spread relatively quickly across neighboring re-
gions (in either country) within their year of occurrence, with
time effects likely to be overstated if the econometric analysis
disregards spatial effects. On the other hand, with broad ge-
ographical reference units, positive spatial lag autoregressive
parameters may be biased upwards as a consequence of partly
spurious spatial interdependence (similar to what is observed
relative to long-run persistence properties of annual economic
time series, as partly “a figment of temporal aggregation”;
Rossana and Seater, 1995). When sufficient statistical informa-
tion becomes available at higher levels of spatial detail (such
as districts within UN-SALB “level 2” boundaries), the sensi-
tivity of spatial regression estimates to geographical scale and
aggregation (including a possible “modifiable areal unit prob-
lem”) should be tested for. Attention could also be addressed to
spatial spillovers between neighboring countries and from main
urban centers, as well as space- and time-related interactions
between food crop performance and livestock activities (such
as price disruptions in opposite directions during drought pe-
riods; World Bank, 2008). This would allow an assessment of
specific factors, such as transport infrastructure and marketing
systems, which remain largely undetected at higher levels of
spatial aggregation.
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Appendix I: Drought tolerance, price affordability, and
nutritional adequacy in the Sahel: selected food crops

Along with sorghum, millet has a history of cultivation in
the Sahel dating back to 3,000–5,000 years ago (Diakité et
al., 2008). Despite being regarded as relatively more drought-
resistant and advocated as a priority target for food crop man-
agement, millet is often less preferred to sorghum due to its
longer maturation period (Abdoulaye and Sanders, 2006; In-
gram, 2005; Wyatt et al., 1999). Among millet species, white
fonio (digitaria exilis) is characterized by high nutritional prop-
erties and short growing season (six to eight weeks), and has
proven to be highly adaptable to sandy and stony soils. The
assumed superiority of improved varieties for harsh climatic
environments is questioned by studies pointing to lower yield
stability compared with old varieties, with higher yields in good
years, and conversely in bad years for sorghum and millet (this
may explain a reversion to old varieties in Niger following
drought periods in the late 1980s; Maredia et al., 2000).

Among other crops deemed to be relatively resistant to
droughts and desert locust infestations and as the third most
relevant source of calories in tropical developing countries
after maize and rice, cassava is promoted by NEPAD (New
Partnership for Africa’s Development) for increased food se-
curity and rural income stability, especially for farmers re-
lying on marginal land (Madamombe, 2006; Nweke, 2005,
p. 17; Spencer, 2005). World production has more than tripled
since the early 1960s, with major increases in West and Cen-
tral Africa: over the last decade, Africa as a whole has become
the largest cassava-producing world region (UN-ECA, 2007).
Compared with maize, cassava is cheaper and easier to grow, is
less vulnerable to low rainfall and poor soil, and its yields are at
least three times as high on average. However, unimproved cas-
sava varieties provide lower protein and starch content, grow
slowly (almost two years needed to reach maximum yields),
face rapid post-harvest deterioration, and are exposed to severe
disease problems (Mwangi, 1996). Under rain-fed conditions,
maize is more responsive to fertilizer use and is preferred by
many farmers.

Unlike neighboring coastal countries, in landlocked Sahel re-
gions traditional coarse grains as sorghum and millet constitute
the main staple (e.g., in Niger, grains cover nearly 75% of calo-
rie consumption per capita; Aker, 2008b). This contrasts with
shortage of roots (cassava is used more as livestock feed) and
vitamin A-rich food in the diet (Zagré et al., 2002). Severe mal-
nutrition is widespread particularly in agro-pastoral areas. With
nearly half of its population estimated to be chronically un-
dernourished, Niger is particularly vulnerable to droughts and
food insecurity (Lopriore and Muehlhoff, 2003). Urbanization
has stimulated demand for maize products and imported cere-
als, with consumption shifting away from traditional staples. As
in a Boserup-type framework (Nweke, 2005), growing popula-
tion pressure in the southern Sahel may foster intensification of
agricultural production, thus favoring the adoption of improved
(higher-yielding and shorter-cycle) varieties of maize, millet,
and other food crops. Whether these effects comply with long-
term sustainability, it remains uncertain, depending on factors
such as susceptibility to pests and crop diseases, and social
tensions due to high pressure on land tenure. Since most seed
supply is provided through informal village grain markets, cer-
tified improved seeds cover a minor share of main cereal crops
(in Mali, 10% for millet and 20% for sorghum; Diakité et al.,
2008; for maize in Burkina Faso, see Maredia et al., 2000).

In recent years, a progressive shift of livestock activities out
of Saharan desert margins into southern Sahel regions has led
to increased encroachment between cattle-grazing and agricul-
tural cultivations. As a consequence, many farmers have moved
towards better-watered and more productive areas further south
(or south-west, for Burkina Faso), while others have cleared
land for cultivation in northern regions benefiting from tempo-
rary episodes of sufficient rainfall (Trench et al., 2007). In some
cases, improvements in cereal and cowpea storage facilities
and participatory management of natural resources (e.g., inte-
grated farming and livestock production in Toukoumous, in the
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outskirts of Niamey; Fleury, 2008) have contributed to contain
conflicts between farmers and herders. The implications of the
ongoing reshaping of population distribution and land use are
controversial. While farmers in the northern Sahel are partic-
ularly vulnerable to climatic fluctuations, harvest failures and
hikes in market prices can have disruptive effects in southern,
densely populated regions, thus aggravating food insecurity in
urban and rural areas.

Appendix II: Spatial regression with panel data

Regression models accounting for spatial effects fall into two
broad categories, depending on whether geographical interde-
pendence follows a pattern of (a) spatial autocorrelation or (b)
spatial heterogeneity. The presence of the latter can be detected
with spatial regime proxies, while a common specification for
case (a) is the spatial autoregressive (SAR) model, where a spa-
tially lagged endogenous variable (y(sp)it in Eq. (7) below) is
constructed as a weighted average of the dependent variable in
neighboring locations. Alternatively, relative to unidentifiable
neighborhood effects, spatial autocorrelation can be captured by
random disturbances in a spatial error (SER) model (Anselin,
2006). As for unobserved heterogeneity in cross-section sam-
ples, panel data allow a clearer distinction between two partly
interrelated determinants of spatial clustering, which reflect the
above patterns, namely spillover effects from one region to an-
other and within-cluster similarity in indicators with a spatial
dimension.

A panel data univariate dynamic SAR model with first-order
time and spatial lags is represented by Eq. (7)

yit = μi + αyi,t−1 + β1y(sp)it + β2y(sp)i,t−1 + εit , (7)

εit = ρεi,t−1 + δ1ε(sp)it + δ2ε(sp)i,t−1 + ηit , (8)

where εit denotes a cross-time/space idiosyncratic error (which
may exhibit serial, spatial, and/or lagged spatial correlation, as
in Eq. (8), thus implying a mixed SAR-SER model), and μi

a region-specific fixed effect. Consistent panel data estimators
maintain this property in a spatial regression model as Eq. (7)
if ρ = δ1 = δ2 = 0 (although with slowed down asymptotics),
and are asymptotically efficient if the error variance is constant
across regimes (Anselin, 2006; Anselin et al., 2008). In the pres-
ence of contemporaneous spatial residual correlation, parameter
identification, and avoidance of simultaneity bias require that
yit−1 and y(sp)it−1 be weakly exogenous, that is, that ρ = δ2 = 0
(Beenstock and Felsenstein, 2006). Estimation is then by fixed-
effects instrumental variables (IV), single-equation GMM, or
extended (system) GMM. If an exogenous variable xit with lin-
ear additive parameter γ is included in (7) and ρ = δ1 = δ2 = 0,
a dynamic SARX (AR(1)-SARX(1)) model is obtained, which
can be expressed as

yit = μi[1 − β1B
s]−1 + [α + β2B

s][1 − β1B
s]−1yi,t−1

+ γ [1 − β1B
s]−1xit + [1 − β1B

s]−1εit , (9)

where Bs is a spatial lag operator associated with a contigu-
ity criterion s (with row-standardized spatial weights, that is,
Bsxit represents the weighted average sum of values xjt corre-
sponding to spatial units “around” the spatial unit i). In par-
tial analogy with the Koyck representation in distributed lag
models, specification (9) implies a (time-/space-wise) long-run
global diffusion response of yit to xit equal to γ [1 − α − (β1

+ β2)Bs]−1. This requires the stability condition 0 < α + (β1

+ β2) Bs < 1, besides the stationarity conditions on individual
parameters, that is, α within the parameter space (−1, 1) and β1

and β2 within the interval (1/ωmin,1) (where ωmin is the small-
est [most negative] characteristic root of the row-normalized
weight matrix, hence possibly 1/ωmin < −1; Elhorst, 2010).

Controversial empirical issues concern (i) the spatial weight
matrix, (ii) the timing and strength/speed of a spatial diffusion
process, and (iii) the scope for spurious relationships and spa-
tial trend nonstationarity. Econometric theory on the last two
points is still at an early development stage. Relative to (ii),
synchronic and time-lagged spatial effects may be hardly dis-
tinguishable when time series are highly correlated and spatial
correlation is weak (López and Chasco Yrigoyen, 2007). As
for point (i), predominant directional effects (from upstream to
downstream locations) justify the use of scale-adjusted mea-
sures of geographical distance, with the latter (dij) adjusted by
relative regional population shares (Beenstock and Felsenstein,
2006) or other suitable scale indicators. In this case, the weight
matrix (row-standardized to unit-sum) would comply with the
following conditions: wij = 0 for i = j or dij > dmax (diffu-
sion cut-off distance), wij = (1/dij)[Zit/(Zit + Zjt)] for i �= j
and dij < dmax (with Z a scale proxy). This approach contrasts
with an isotropy assumption, with equal influences in both di-
rections of a diffusion process between regions and weights
based on pure geographical distance metrics (arc-distance for
unprojected spherical maps, Eucledian distance for projected
planimetric surfaces).

Anselin and Bera (1998, p. 244) argue that “indicators for
socioeconomic weights should be chosen with great care to en-
sure their exogeneity [to avoid problems of identification and
interpretability], unless their endogeneity is considered explic-
itly in the model specification” (see also Anselin et al., 2008).
In either case, a unit row-rescaling is usually applied in spatial
regression analysis, so as to construct spatial lags as weighted
averages of neighboring observations. However, this may re-
sult in loss of information for the interpretation of the decay
function, especially if an unrestricted form is relied on (e.g.,
based on a spatial lag parameter in Eq. (7): β1(1/(dij)ζ ). Even
if a unit restriction (ζ = 1) is imposed on the decay function
and unless all cross-region coordinates are connected (with the
longest distance chosen as dmax), a trade-off in a suitable choice
of spatial weights is unavoidable: on the one hand, scale effects
may be preferable to isotropy, but on the other, asymmetry in the
weight matrix with scale effects originates from two sources,
that is row-standardization and directional effect rescaling.

Relative to point (iii), in an nT panel, spurious spatial regres-
sion problems may occur, and are found to get worse with larger
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T and smaller n (sample of spatial units: Kao, 1999; Lauridsen
and Kosfeld, 2004). Time and spatial nonstationarity impinge
upon statistical inference with increased probability of type I er-
ror. Their presence can be detected by very low Durbin-Watson
statistics and very high Moran’s I statistics for regression residu-
als, respectively (although the latter is a diffuse test, which does
not clearly distinguish between stationary positive autocorrela-
tion and nonstationarity; formal tests are proposed by Lauridsen
and Kosfeld, 2004). As a spatial analog of dynamic (Phillips-
Loretan) cointegration regression, dynamic SAR specifications
as Eq. (7) help reduce the risk of spurious results (Mur, 2002).
For heterogeneous panel data models with partly changing in-
tercept and/slope parameters across regions, the (pool) τ -bar
statistic has better size and power properties than other panel
unit root and cointegration tests (Kao, 1999; McCoskey and
Kao, 2001). However, even if they incorporate cross-section
dependence, panel unit root tests have size distortions if spatial
error correlation in the true model is disregarded, particularly
in large T panels (while being less reliable in small T panels;
Baltagi et al., 2007).
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Zagré, N.-M., Delisle, H., Tarini, A., Delpeuch, F., 2002. Evolution des apports
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