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Abstract 

Price volatility in the corn market has changed considerably globalization and stronger linkages 

to the energy complex. Using data from January 1989 through December 2009, we estimate and 

forecast the volatility in the corn market using futures daily prices.  Estimates in a Fractional 

Integrated GARCH framework identify the importance of long memory, seasonality, and 

structural change.  Recursively generated forecasts for up to 40-day horizons starting in January 

2005 highlight the importance of seasonality, and long memory specifications which perform 

well at more distant horizons particularly with rising volatility. The forecast benefits of allowing 

for structural change in an adaptive framework are more difficult to identify except at more 

distant horizons after a large downturn in volatility.     

 

Keywords: corn price volatility, long memory, seasonality, structural change, forecasting 
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Forecasting Corn Futures Volatility in the Presence of Long Memory, Seasonality and 
Structural Change 

 
Introduction 

Understanding the structure and developing accurate forecasts of price volatility can serve an 

essential role in risk management, and option pricing. In futures markets, volatility can influence 

margin calls. Volatility is also a critical factor in option pricing. Predictability of its direction and 

magnitude accuracy is helpful for effective commodity derivatives pricing (Myers and Hanson, 

1993). Moreover, in hedging, expected volatility is a key factor in determining optimal hedge 

ratios, and as a measure of relative cost and risk of taking market positions (Haigh, 2005). 

Unexpected changes in volatility can represent higher risk and higher cost to market participants.      

Researchers have spent considerable time developing an understanding agricultural 

commodity price volatility, but much less attention on developing volatility forecasting.    

Evidence has emerged that volatility in commodity grain prices is non-constant, time varying, 

and seasonal in nature (Kendall, 1953; Anderson, 1985; Yang and Brorsen, 1993; Egelkraut and 

Garcia, 2007).  Crain and Lee (1996) identify grain price volatility is highly influenced by 

changes in government programs, and also argue that volatility is primarily transferred from 

futures to cash prices. Goodwin and Schnepf (2000) identify the determinants of price volatility 

for corn and wheat futures markets, including inventories, growing conditions, seasonality.  They, 

among others (e.g. Yang and Brorsen, 1993; Szakmary, 2003), demonstrate that short-term 

volatility in agricultural prices can be effectively explained by conditional heteroscedastic 

models.  

Two important dimensions of agricultural price volatility have emerged in recent years.  

Crato and Ray (2000), Jin and Frechette (2004), Baillie, et al. (2007), and Sephton  (2009) have 

identified pervasive patterns of long-term dependence in the volatility of agricultural futures 
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markets.  Long-term dependence is a form of nonlinear dynamics that describes strong 

correlation patterns at extended lags.  While the sources of the long-term dependence are 

somewhat controversial, Jin and Frechette (2004) argue this dependence can arise from staggered 

supply and demand information flows, changes in inventory, and trader heterogeneity which 

exist in futures and cash markets.  A second key dimension is a change in price volatility which 

has appeared in recent years.  Resulting price spikes and periods of high volatility are likely 

related to a changing structure in agricultural markets which are now more global with stronger 

linkages to the energy complex (Irwin, et al., 2008). Because of growing world demand and 

biofuel mandates which link agricultural and energy markets, it is likely that heightened 

volatility will persist in agricultural markets.  

In this context, it is apparent that forecasting volatility in agricultural commodity markets 

is a challenging yet potentially rewarding task.  The limited recent research on agricultural price 

volatility forecasting has focused primarily on short-term forecasting using conditional 

heteroscedastic models in livestock markets (Manfredo, Leuthold, and Irwin, 2001; Brittain, 

Garcia, and Irwin, 2011).  In contrast, Egelkraut and Garcia (2007), using data through 2001—a 

relatively stable period, generate reasonably effective intermediate interval forecasts using 

implied forward volatilities for selected grains. Here, we investigate the usefulness of recently 

developed methods, which capture long-term dependence, seasonality and structural change, to 

forecast corn futures price volatility. The basic structure uses a General Autoregressive 

Conditional Heteroskedasticity (GARCH) framework to address the short-term changes in 

volatility. Seasonality is included in a Fourier basis framework (Goodwin and Schnepf, 2000). A 

long memory dimension is estimated using fractional integration developed by Baillie et al 

(1996), and applied by many researchers to agricultural commodities (e.g., Jin and Frechette, 
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2004). We also incorporate flexible Fourier forms based functions developed by Baillie and 

Morana (2009) to provide an adaptive framework that allows structural change in the volatility 

process.  

The analysis is performed using daily settlement prices from January 1989 to 2009 for 

nearby corn futures contracts to generate volatilities. We first estimate and compare the 

performance of simple GARCH, Fractional Integrated GARCH (FIGARCH), seasonal 

FIGARCH and seasonal Adaptive FIGARCH models for the entire sample period.  Then starting 

in 2005, we recursively generate daily out-of sample forecasts for 1, 10, 25, and 40 days ahead, 

using model specifications based on AIC. The out-of-sample period is marked by a rather stable, 

followed by an increase in volatility, then a turn down, and the ability of forecast procedures was 

influenced this pattern. Out-of-sample forecasts are evaluated using mean squared errors (MSE) 

and modified Diebold-Mariano (MDM) procedures.   

 

Literature Review 

Research has identified the presence of a long memory pattern in corn price volatility (Crato and 

Ray, 2000; Jin and Frechette, 2004; Baillie, et al., 2007; Sephton, 2009). In the context of an 

impulse response function, this means the weights of external shock decay slowly at 

hyperbolically rate with time.1 Crato and Ray’s tests (2000) identify a long memory property in 

volatility series. Jin and Frechette (2004) find the long run decay can be well described by 

fractional integration of past unconditional variance innovations (FIGARCH). Baillie, et al. 

(2007) further find strong seasonality which if accounted for can mask the magnitude long 

                                                            
1 It can as well be shown in autocorrelation function (ACF) ρ(h) between the time t and t-h. For white noise series , 
ρ(h) = 0 the process is said to have no memory. When ρ(h) decays to 0 quickly at a geometric or exponential rate, 
the series is said to have short memory. 
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memory effect. Sephton (2009) shows long memory continues to persist when allowing for 

asymmetric effects conditional on previous returns. 

Long memory volatility forecast models have been studied rather extensively in financial 

and crude oil market. Long-memory alone has been found to capture volatility clustering and 

persistence better than short-term modeling procedures, particularly at more distant horizons 

(Vilasuso, 2002; Martens and Zein, 2004; Zumbach, 2004; Kang et al., 2009). For example, 

Vilasuso (2002) find FIGARCH significantly improves forecasting accuracy at a 10 day horizon 

for five major exchange markets. There are also substantial gains in shorter forecasting horizons 

at 1 and 5 days, although not all significant. Kang et al. (2009) find FIGARCH perform 

significantly better at 1, 5 and 20 days forecast in crude oil markets. Later extensions allowing 

for asymmetric responses in returns series confirm the usefulness of long memory in forecasting 

(Degiannakis, 2004; Lux and Kaizoji, 2007; Martens et al., 2009; Scharth and Medeiros, 2009).  

However, long memory models have not worked well in all situations.  Specifically, Lux and 

Kaizoji (2007) indicate that while long memory models generally work well, cases of drastic 

failures can emerge related to regime shifts. In periods of large changes in volatility, this 

limitation of long memory models may be severe.   

To overcome this issue, Baillie and Morona (2009) propose an Adaptive FIGARCH (A-

FIGARCH) approach to account for both long memory and structural changes in response to 

large shocks. The intercept or constant component of the FIGARCH model is augmented by a 

smooth flexible Fourier form developed by Gallant (1984). In this way, A-FIGARCH model 

considers both stochastic long memory component and deterministic break process component. It 

does not require pre-testing for the number of break points, nor does it require volatility regimes 

switches because it is simultaneously estimated. Simulation analysis and empirical results 
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suggest their framework works well in the presence of embedded breaks, cycles and other 

changes in conditional volatility (Baillie and Morona, 2009). Compared to other methods to 

capture the non-linear structural movements, e.g., non-parametric spline functions (Engle and 

Rangel 2008, Martens, et al., 2009), flexible Fourier forms have the advantage of specification 

parsimony and require no identification of structural change points. Their shape is estimated with 

observed data. 

 

Modeling Framework  

Following Engle (1982), return series rt have the predicting error 1[ ]t t t tr E r   ,  where  1tE  is 

expectation operator conditional on information at t-1. Assuming market efficiency, the expected 

return is zero and the realized volatility is the predictive error squared. To model this error, 

Bollerslev (1986) developed the generalized ARCH (GARCH) model to include both conditional 

and unconditional variance innovations, which correspond to a learning process. He defines 

௧ߝ ൌ    ,௧ߪ௧ݖ
 

z୲ is iid with zero mean and unit variance. The GARCH process is proposed as  

σ୲
ଶ ൌ ω ൅ αሺLሻσ୲

ଶ ൅ βሺLሻε୲
ଶ,   

where  ω ൐ ሻܮሺߙ .is backshift operator ܮ ,0 ൌ ܮଵߙ ൅⋯൅ ܮ௣ߙ
௣and ߚሺܮሻ ൌ ܮଵߚ ൅⋯൅ ܮ௤ߚ

௤ are 

lag polynomials. Restrictions on ߙሺܮሻ and ߚሺܮሻ are ߙሺܮሻ ൅  ሻ <1. Because of its robustnessܮሺߚ

and applicability in many empirical situations, the most widely used specification is a 

GARCH(1,1) process  

௧ߪ
ଶ ൌ ߱ ൅ ௧ିଵߪߙ

ଶ ൅ ௧ିଵߝߚ
ଶ ,ߙ , ߚ ൐ 0, ߙ ൅ ߚ ൏ 1.                                     (1) 

In this framework, conditional volatility is decomposed into three parts: the long run mean 

volatility (variance)  ω  , previous conditional volatility σ୲ିଵ
ଶ  and previous unconditional 
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volatility ε୲ିଵ
ଶ . Such formulation has proved to be useful in capturing the clustering effect of 

volatility series. 

Alternatively, GARCH(p,q) can be expressed as the ARMA(p,q) form 

ሾ1 െ αሺLሻ െ βሺLሻሿε୲
ଶ ൌ ω ൅ ሾ1 െ βሺLሻሿv୲, 

where v୲ ≡ ε୲
ଶ െ σ୲

ଶ. For GARCH(1,1) process, the impulse response from unconditional 

innovation h steps back is  αሺα ൅ βሻ୦, which decays exponentially with step h. 

To capture the long memory, Baillie et al. (1996) combine the Fractional Integrated 

ARMA(p,d,q) with GARCH(p,q) model to create FIGARCH(p,d,q) model which takes the form  

ሾ1 െ βሺLሻሿσ୲
ଶ ൌ ω ൅ ሾ1 െ βሺLሻെϕሺLሻሺ1 െ Lሻୢሿε୲

ଶ, 

 ϕሺLሻ ൌ 1 െ αሺLሻ െ βሺLሻ, and 0<d<1, which can also be expressed in ARMA form 

ൣϕሺLሻሺ1 െ Lሻୢ൧ε୲
ଶ ൌ ω ൅ ሾ1 െ βሺLሻሿv୲. 

The conditional variance is 

௧ߪ
ଶ ൌ ߱ሾ1 െ ሺ1ሻሿିଵߚ ൅ ௧ߝሻܮሺߣ

ଶ,            (2) 

And ߣሺܮሻ ൌ 1 െ ሺ1 െ ሻሺ1ܮሻሻିଵ߶ሺܮሺߚ െ ሻௗ.The term ሺ1ܮ െ  ሻௗ can be extrapolated in terms ofܮ

hyper-geometric function as infinite polynomials  

ሺ1 െ ሻௗܮ ൌ ,ሺെ݀ܨ 1,1;  ሻܮ

ൌ ∑ ሺ݇߁ െ ݀ሻ߁ሺ݇ ൅ 1ሻିଵ߁ሺെ݀௞ୀ଴,ஶ ሻିଵܮ௞, 

where Γሺ∙ሻ is Gamma function. It can also be expressed in infinite binomial expansion:  

1 െ ܮ݀ െ
1

2
݀ሺ1 െ ݀ሻܮଶ െ

1

6
݀ሺ1 െ ݀ሻሺ2 െ ݀ሻܮଷ െ ⋯ 
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The hyperbolic decay of Gamma function expansion can be used to model the long run decay of 

volatility autocorrelation.2 Notice GARCH(p,q) is nested in the FIGARCH(p,d,q) specification. 

When fractional integration parameter d=0, FIGARCH(p,d,q) reduces to GARCH(p,q). 

To allow for regime shifts in the conditional volatility, Baillie and Morana (2009) 

develop an adapative FIGARCH model.  The FIGARCH assumes its conditional mean   is 

constant and the effect on persistence of all shocks is equal.  However, in many situations it is 

more common for a few significant and fundamental shocks to a longer more pronounced effect 

on volatility than small and frequent shocks.  To allow for this effect, their model permits the 

constant term to vary over time using a smooth flexible Fourier form (Gallant, 1984).  The  A-

FIGARCH(p,d,q,k) formulation is similar to FIGARCH(p,d,q) specification,    

ሾ1 െ βሺLሻሿσ୲
ଶ ൌ ω୲ ൅ ሾ1 െ βሺLሻെϕሺLሻሺ1 െ Lሻୢሿε୲

ଶ,    (3) 

but now ω୲ ൌ ω଴ ൅෍ ቀγ୨ cos
ଶ஠୨୲

୘
൅ δ୨ sin

ଶ஠୨୲

୘
ቁ

୩

୨ୀଵ
 for each observation t. It reduces to 

FIGARCH when ω୲ ൌ ωሾ1 െ βሺ1ሻሿିଵ is constant. T is usually set as the number of observations. 

Baillie and Morana (2009) demonstrate even with parsimonious settings of k = 1 or 2, the model 

can capture quite abrupt structural level shifts.  

Seasonality ݏ௧ in volatility also can be represented by the Fourier pairs, ݏ௧ ൌ

∑ ሺܽ௜ ∙ cos
ଶగ௜௧

ଶହଶ
൅ ܾ௜ ∙ sin

ଶగ௜௧

ଶହଶ
ሻ௠

௜ୀଵ  (Goodwin and Schnepf, 2000). In the case of the corn futures 

prices, which has been shown to have higher volatility in the middle of the year (Figure 1), an 

inverse cosine function may provide an adequate and parsimonious representation. The sin ሺ∙ሻ 

function is included to capture possible leptokurtosis. Combining the adaptive and seasonal 

models leads to a seasonal A-FIGARCH (SA-FIGARCH) specified as 

                                                            
2 For estimation, the number of lags is truncated at 1000. Baillie et al. (1996) have shown that bias resulting from 
truncation is negligible. 
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ሾ1 െ βሺLሻሿσ୲
ଶ ൌ ω୲ ൅ s୲ ൅ ሾ1 െ βሺLሻെϕሺLሻሺ1 െ Lሻୢሿε୲

ଶ.    (4) 

In the empirical analysis, the period for the seasonality is chosen as 252, which corresponds to 

the number of days in business year, and to large spike in the pattern demonstrated by the long-

run decay in the autocorrelation function. The number of adaptive and seasonal triangular 

functional pairs is determined by Akaike Information Criterion (AIC).  

Quasi Maximum Likelihood Estimation method (QMLE) proposed by Bollerslev and 

Wooldridge (2002) is used. QMLE has the advantage of being consistent when a normal log-

likelihood function is maximized but the assumption of error normality is violated. The limiting 

distribution is still normal if the sample is large enough. Since the series shows signs of kurtosis 

and spikes, the QMLE method seems appropriate. To evaluate forecast accuracy, mean squared 

errors (MSE) are calculated: ܧܵܯ ൌ
ଵ

௡
∑ ሺߪ௙,௧

ଶ െ ௔,௧ߪ
ଶ௡

௜ୀଵ ሻଶ ௙,௧ߪ .
ଶ ௔,௧ߪ , 

ଶ  are volatility forecast and 

actual volatility for day t, n is number of forecast data points. The Harvey et al. (1997) modified 

Diebold-Mariano statistic (MDM) is used to test for equal forecast accuracy, based on the 

squared error loss function. The MDM corrects for autocorrelation in forecast values, and is 

reasonably robust to non-normality. The MDM follows t-distribution with n-1 degrees of 

freedom under the null hypothesis of similar forecast accuracy. 

We start by estimating the simple GARCH(1,1) model, then include components of long 

memory effect (FIGARCH(1,d,1)), seasonal level shifts (S-FIGARCH(1,d,1)) and long term 

structural change (SA-FIGARCH(1,d,1)). Before generating forecast results, we first estimate the 

four models for the entire sample period to illustrate their general performance. Then we 

generate forecast from the four models recursively. Finally we compare their forecast ability. 

We conduct two sets of forecast difference tests. First, each forecast model at each 

forecast horizon is compared to a benchmark GARCH(1,1).  This is motivated by a desire to 
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determine whether additional complexity leads to improved forecasts, and by Hansen and Lunde 

(2005) who find that it is difficult to out-perform a simple GARCH(1,1). Second, at each horizon, 

the model with the lowest MSE is compared to other specification to see if the gains are 

significant.  

 

Data Description  

The data used are daily corn futures settlement prices for contracts traded at the Chicago Board 

of Trade (CBOT). The data are transformed following standard procedures (Vilasuso, 2002; Jin 

and Frechette, 2004; Baillie, et al., 2007; Sephton, 2009; Kang et al., 2009). The price series runs 

from January 3, 1989 through December 31, 2009. The daily percentage returns, rt ≡ 100(ln(f t/f 

t-1)), are derived from the futures prices f t. Since contracts only last for a limited period, the next 

nearby contract is blended into the series in a way to avoid jumps that can emerge at expiration. 

Specifically, on the expiration day of the month (day t), the return is calculated using the old 

contract’s settlement price for day t and t-1. On next day (t+1), we switch to the nearby contract 

and the return is calculated using the settlement price for the new contract for day t+1 and t. The 

process continues with subsequent contract prices to generate a continuous returns series. Daily 

realized volatility (variance) is calculated as the square returns rt
2, a simplification consistent 

with market efficiency. With approximately 252 observations a year, the number of observations 

is 5292. 

Figure 2 plots the daily returns and volatility, and Table 1 provides summary statistics. 

Daily returns fluctuate around a zero mean and median, which is consistent with market 

efficiency. The min and max values are similar in magnitude, suggesting distribution of returns is 

symmetric around zero and skewness is close to zero at -0.02. There is also weak kurtosis in 
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returns. While difficult to observe directly in Figure 2, recall the recurring average seasonality 

which peaks in the summer identified in Figure 1. In more recent years, there have been 

extremely high spikes and persistence in volatility. The most dramatic changes in volatility 

occurred during 2008 when the corn price increased sharply to record highs and then dropped 

precipitously in response to the overall decline in the economy related to the subprime crisis.   

The long memory dimension in corn futures volatility is demonstrated using ACF plots.3 

Figure 3 provides the ACF plots for volatility through 800 lags for both periods studied.  The 

ACF structure is quite similar in shape to the figure reported by Baillie et al. (2007). With 

regards to the structure of volatility, several points are informative. First, as anticipated, 

autocorrelations differ from zero (the horizontal dash lines identify the boundaries) at very 

distant daily lags which is a sign of long-memory. Second, local peaks in the autocorrelations 

occur repeatedly at a frequency of 252 days, which coincides with the number of days in which 

contracts are traded in a business year. This repeating pattern is consistent with pronounced 

seasonality. Finally, the ACFs appear to be strong in the beginning, decay slowly and smoothly. 

This may be attributable to an increased persistence caused by the large information shocks in 

more recent times. Combining the information in Figures 1-3 identifies the presence of long 

memory, seasonality, and a changing of structure in market.  

 

Estimation Results 

Table 2 reports the estimated results of each model for the entire period. Both GARCH and 

FIGARCH indicate high levels of persistence; the summation of the GARCH and ARCH 

parameters (ߚ and ߶ ) is close to one. In the FIGARCH model, the fractional integration 

                                                            
3 Several statistics exist capable of showing the long-memory property in volatility series. See Crato and Ray (2000), 
Smith (2004), and Elder and Jin (2007). Since observed long memory in corn volatility is not contentious, we focus 
primarily on the autocorrelation functions which are more informative in modeling the structure of volatility. 
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parameter d is above one-half, meaning the process is not weakly stationary—long memory is 

present but with undefined variance. The values of the log-likelihoods and the information 

criteria are virtually identical; making it difficult to differentiate statistically the models. In both 

the S-FIGARCH and the SA-FIGARCH, seasonality is best captured by two Fourier pairs. 

Closer examination of the seasonality results revealed that both sine functions ( and a a1 2 ) are 

non-significant and extremely small in size compared to cosine terms, so only only the two 

cosine terms remain. The estimated seasonal pattern is plotted in Figure 4, which is consistent 

with the realized historical pattern discussed; the procedure seems to effectively recover 

seasonality in the corn volatility.  Inclusion of seasonality reduces long memory estimate in S-

FIGARCH model; the parameter d drops by more than one third and is close to value reported by 

Baillie et al. (2007) after eliminating the seasonal effect.  

The importance of the structural change variables emerges in the SA-FIGARCH 

estimates. A maximum of five pairs of triangular functions are examined and their 

appropriateness assessed using AIC.  We limit the number of pairs to five, which is larger than 

the four pairs used by Baillie and Morana (2009) in their simulation, but smaller than the eight 

pairs used in their empirical application.  Given the shorter time span of our data, the use of more 

than five pairs seems at odds with the intent that the structural terms reflect large fundamental 

changes.  For the entire period, five pairs are identified in the SA-FIGARCH. A log likelihood 

test of their joint significance rejects the null at the 1% level. Inclusion of the structural change 

variables doesn’t seem to affect the seasonality parameters, but the long memory parameter d 

declines by more than a quarter from its value in the S-FIGARCH model. Also, their inclusion 

does affect the traditional ARCH and GARCH parameters (ߚ and ߶), reducing them in size and 

influencing their statistical significance, suggesting that the multiple pairs may be absorbing the 
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short-run volatility. The fitted structural change dimension of the conditional volatility is plotted 

in Figure 4. The fitted structure is consistent in general terms with the earlier discussion of 

realized volatility, but more sensitive than anticipated—perhaps a result of the large number of 

pairs identified. The level of the conditional volatility exhibits an increasing pattern which 

levels-off around 2004 through 2006, then begins to increase at first gradually and then 

dramatically.  The volatility seems to peak in 2008 and then decline sharply in 2009.  

 Overall, the results emphasize the importance of long memory, seasonality, and structural 

change in corn price volatility.  They also identify the sensitivity of the long memory parameter 

to omitted factors whose absence influences the correlation patterns at extended lags. 

     

Forecast Results  

Out-of-sample daily forecasts are recursively generated for the period, 2005/1/3 – 2009/12/31. 

Forecasts are made for 1 day, 10 days, 25 days and 40 days ahead. Each day the next observation 

is added to re-estimate model and forecast.  The forecasts cover a highly volatile period, which 

as discussed are characterized by a relatively stable but slightly increasing period, followed an 

extreme period reflecting the sharp increase and later decline in corn prices, followed by a 

somewhat more stable period (Figure 5).  We analyze forecast performance in three periods—

2005-2007, 2008, 2009—which correspond to this pattern.  The structure of the performance 

analysis can be viewed as a simplified approximation of real-time forecasting in which an analyst 

might carefully monitor the models’ forecast performance on a regular basis.     

The forecast results for the three periods are presented in Table 3.  For each period, the 

forecast model with the lowest MSE at each horizon is in bold font.  Results of the forecast 

difference test results relative to the GARCH(1,1), and relative to the best forecast at a specific 
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horizon for each period are also provided.  The most striking feature of the results are the 

differences in MSE across the three periods which correspond to the extreme behavior of the 

corn market during the forecast period.  MSE values are less than 30 during 2005-2007 while 

larger than 110 in 2008, and near 90 in 2009.    

The performance of the models differs across the three periods and forecast horizons.  

During the relative stable 2005-2007 period (Figure 5), the seasonal S-FIGARCH provides 

forecasts with the lowest MSEs at every horizon.  While these differences are only modest 

compared to the other FIGARCH forecasts, the 10 and 25 day forecasts are significantly smaller 

than the GARCH predictions.  In the absence of structural change, the seasonally adapative 

model provides little benefit.   

During the extremely volatile 2008 period, none of the models work well, but the simple 

FIGARCH dominates the other specifications at all forecast horizons, particularly at longer 

horizons where the strongest significance in the forecast difference tests appears.  Interesting 

during this period, both non-seasonal models out-perform the models with seasonality.  Closer 

examination of the realized volatility revealed that the structural change broke the rather reliable 

seasonal pattern so that the most volatile time in 2008 occurred in the later part of the year 

(Figure 6).  As identified, this high level of volatility is consistent with the timing of the changes 

in financial markets which spilled over to many commodities including corn.  Another factor 

which likely influenced the performance of the simple FIGARCH was the observed effect that 

inclusion of the seasonality on estimates of d (Table 2).  In the absence of seasonality the long 

memory parameter was considerably larger.  In effect, the simpler FIGARCH specification, 

unencumbered by seasonality, was able to capture the increasing volatility that emerged at the 
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end of the period.  Examination of the recursively estimated d values during this period 

supported this notion as they increased in size and significance.   

During 2009, which was less extreme than 2008 but still more volatile than 2005-2007, 

the seasonal FIGARCH re-assumes its relatively better performance.  It produces the lowest 

MSEs at the 1-, 10-, and 25-day horizons, and differs statistically from both the GARCH and 

FIGARCH specifications at the 1- and 40-day horizons.  Interestingly, the structural change also 

begins to work better, particularly at the 40-day horizon which may correspond to its ability to 

capture the downturn identified in Figure 4.   

   

Conclusions and Discussion  

We investigate the ability to forecast corn price volatility at several short and long-term horizons, 

using information from futures prices from January 1989 through December 2009.  Based on 

characteristics of corn volatility, we recursively estimate GARCH-type models that allow for 

long memory, seasonality, and structural change in the conditional volatility.   Beginning in 2005, 

we then assess their forecasting ability using mean squared error at 1-, 10-, 25-, and 40-day 

horizons in a recursive manner.  The forecast analysis is performed in three periods to reflect the 

changing patterns in realized volatility, and in broad terms can be viewed in the context of an 

analyst monitoring real-time forecasts. 

Several general points emerged from the analysis.  First, long memory, seasonality, and 

structural indeed play important roles in corn volatility. In the presence of seasonality and 

structural change, long memory declines in importance, but is still significant.  This finding 

supports the notion that long memory is influenced by a failure to account for structural change 
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and other factors which can affect decay in autocorrelation, but still is consistent with Baillie et 

al (2007) who argue that long memory is a key component to understanding volatility patterns.  

Second, at the very short 1-day horizon, it is hard to differentiate between the simple GARCH 

and the other long memory specifications, except during the 2009 period when the S-FIGARCH 

model has a lower and significantly different MSE.  However, at longer horizons the various 

FIGARCH specifications, particularly the seasonal S-FIGARCH, perform considerably better. 

This result is consistent with Vilasuso (2002), Martens and Zein (2004), Zumbach (2004) and 

Kang et al. (2009) who find long memory on average will forecast better, especially at distant 

horizons in periods dominated by rising persistence. 

Third, both the seasonal (S-FIGARCH) and the seasonal adjusted (SA-FIGARCH) point 

to the importance of seasonality in forecasting corn volatility, except during the extreme 

conditions at the end of 2008 where its regular pattern was disturbed by the subprime crisis.  The 

importance of seasonality is consistent with a rather extensive literature explaining the patterns 

in the corn volatility (e.g. Goodwin and Schnepf, 2000) as well as the limited volatility 

forecasting research (Egelkraut, et al 2007).  Fourth, despite statistical differences in estimation 

over the entire sample, there is little to separate the S-FIGARCH and SA-FIGARCH in terms of 

their forecasting performance. The similar performance is somewhat surprising given the 

structural change in market volatility that emerged in the corn market.  In terms of the 

procedures used here, a key to the similarity in performance may arise from the apparent 

interaction between the traditional ARCH and GARCH parameters (ߚ and ߶) and the structural 

change parameters as evidenced in estimation. Inclusion of the long-run structural change 

dimension of conditional volatility seems to absorb the short-run effects, with little improvement 

in the forecasting.  Interestingly, this occurred in both in more volatile periods where the number 
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of pairs in the Fourier form reached five, and in the relatively stable period where the number of 

pairs was three (Figure 5). This suggests that the framework may have difficulty disentangling 

the short- and long-term effects for data used here. Perhaps, a less volatile, longer time span is 

required.  For instance, Baillie and Morana (2009) in their innovative work used weekly data 

starting 1928 to 2007 to separate the short- and long-term effects, and demonstrate forecasting 

improvement.   

Finally, the fact that forecasting performance was limited should not dissuade researchers 

from further efforts.  The forecasting analysis here was framed in a long-term, recursive 

framework consistent with recent literature in agricultural markets that focused on long memory 

in volatility and the presence of dramatic market structural change. In a forecasting framework 

which does not focus on long memory, other procedures as simple as rolling-window estimation 

may lead to better forecasts at least in more nearby horizons.  In addition, composite forecast 

models between the long- and short-term dimensions of volatility may lead to improved 

performance.  However, it should be noted that volatility forecasting is indeed a challenging task 

which will not become easier in global markets that linked directly to the energy complex. 
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Table 1 Summary Statistics of Volatility and Returns, 1989/1/3 - 2009/12/31 

 Mean Median Std Dev Kurtosis Skewness Minimum Maximum N 
vol 2.31 0.66 4.99 47.04 5.49 0 75.03 5292 

return -0.025 0.00 1.52 5.66 -0.017 -8.10   8.66 5292 
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Table 2 Results for Volatility Models, 1989/1/3-2009/12/31 

  GARCH(1,1)    FIGARCH(1,d,1)  S‐FIGARCH(1,d,1)  SA‐FIGARCH(1,d,1) 

߱  0.020   (0.01)    0.132   (0.03)  0.263   (0.05)  0.535   (0.135) 

 றߚ 0.917    (0.01)    0.688   (0.075)  0.551   (0.07)  0.345    (0.161) 

ϕற  0.076   (0.01)    0.223   (0.043)  0.278   (0.06)  0.174      (0.14) 

݀      0.549   (0.09)  0.341   (0.04)  0.227    (0.043) 

Seasonals         

ܽଵ        ‐  ‐ 

ܾଵ        ‐0.427   (0.063)  ‐0.470    (0.072) 

ܽଶ        ‐  ‐ 

ܾଶ        0.125   (0.043)  0.127     (0.052) 

Structurals         

 ଵߜ         ‐0.233    (0.077) 

 ଵߛ         0.143     (0.167) 

 ଶߜ         ‐0.243     (0.122) 

 ଶߛ         0.072     (0.145) 

 ଷߜ         ‐0.123     (0.167) 

 ଷߛ         ‐0.039     (0.103) 

 ସߜ         ‐0.140     (0.136) 

 ସߛ         ‐0.038     (0.086) 

 ହߜ         ‐0.080     (0.069) 

 ହߛ         ‐0.099     (0.083) 

AIC:  1.716    1.716  1.709  1.707 

SIC:  1.719    1.719  1.713  1.717 

LL  ‐9077.78    ‐9078.69  ‐9037.85  ‐9018.83 

Q(10)  0.695    0.524  0.814  0.756 

Q(20)  0.237    0.166  0.244  0.200 

Kurtosis  4.26    4.257  4.203  4.141 

T  5292    5292  5292  5292 

†.  β is parameter for the conditional variance and ϕ  is for the unconditional variance. Asymptotic standard 
errors are reported in parenthesis. AIC and SIC are Akaike and Schwarz information criteria. Seasonal and 
structural terms are included based on lowest AIC value. LL is the value of the log-likelihood function. Q(k) is 
Ljung-Box test p-value for k lags on the squared standard residuals. Kurtosis is for the standardized residuals.  
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Table 3 Mean Squared Error (MSE) and MDM Results 

MSE for 2005-2007 

GARCH FIGARCH S-FIGARCH SA-FIGARCH 

1 day        27.0 27.1            26.8 26.8 
10 days 28.2*   28.2* 27.7† 27.8 
25 days 29.4* 29.3 28.6† 28.8 

40 days         29.7 29.5             29.0 29.4 

MSE for 2008 

  GARCH FIGARCH S-FIGARCH SA-FIGARCH 

1 day 113.2       113.0 113.9 114.3 
10 days     119.2** 118.3†† 120.8 121.0 

25 days 117.1       116.3     124.7**   123.8* 

40 days       122.1***       120.0††† 129.7 127.2 

MSE for 2009 

GARCH FIGARCH S-FIGARCH SA-FIGARCH 
1 day  94.1* 94.5**  93.1† 93.3 

10 days 93.1        93.7 91.5 91.6 

25 days 95.8        96.2 92.2 92.4 

40 days     99.9**        99.9*     93.6††     93.5†† 
Notes:  1). Lowest MSE in bold fonts for each period and horizon  
            2). †††,††,† significance at 1, 5 and 10% relative to GARCH for each period and horizon 
            3). ***,**,* significance at 1, 5 and 10% relative to the best forecast for each period and horizon 
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Figure 1 Average Monthly Corn Futures Volatility 
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     Figure 2 Daily Corn Futures Return and Volatility, 1989-2009 

 

  



26 
 

              Figure 3 ACF of Daily Corn Futures Volatility 1989/1/3-2009/12/31 
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          Figure 4 Long-term volatility structure and seasonality in the SA-FIGARCH 
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             Figure 5 Volatility in forecast period and estimated adaptive structural pairs  

 

 


